Całka przez podstawienie

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
kasia67
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 10 gru 2010, o 17:51
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 2 razy

Całka przez podstawienie

Post autor: kasia67 » 21 cze 2011, o 11:06

\(\displaystyle{ \int_{- \infty }^{ \pi } \frac{2 ^{tg(x+ \pi )} }{cos ^{2} x+ \pi }}\) jak to obliczyc?

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

Całka przez podstawienie

Post autor: Lorek » 21 cze 2011, o 11:15

Tam jest \(\displaystyle{ (\cos^2 x)+\pi}\) czy \(\displaystyle{ \cos^2 (x+\pi)}\) ?

kasia67
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 10 gru 2010, o 17:51
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 2 razy

Całka przez podstawienie

Post autor: kasia67 » 21 cze 2011, o 11:17

\(\displaystyle{ (\cos^2 x)+\pi}\)

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

Całka przez podstawienie

Post autor: Lorek » 21 cze 2011, o 11:33

No cóż, jeśli chodzi o zbieżność to wystarczy zbadać przedział \(\displaystyle{ [0,\frac{\pi}{2}]}\), a jakbyś chciała wyznaczyć całkę nieoznaczoną z tego co pod całką, to podstawienie \(\displaystyle{ t=\tg x}\), tyle, że potem nieciekawe rzeczy wychodzą.

kasia67
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 10 gru 2010, o 17:51
Płeć: Kobieta
Lokalizacja: Poznań
Podziękował: 2 razy

Całka przez podstawienie

Post autor: kasia67 » 21 cze 2011, o 11:37

a moglbys pokazac poczatek z tym \(\displaystyle{ tg}\)-- 21 cze 2011, o 12:38 --mam obliczyc metoda podstawiania \(\displaystyle{ tg(x+ \pi )=z}\) i jak bedzie \(\displaystyle{ dx}\) i \(\displaystyle{ dz}\)

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

Całka przez podstawienie

Post autor: Lorek » 21 cze 2011, o 12:35

No to pierwsze co warto zauważyć, to to , że \(\displaystyle{ \tg (x+\pi)=\tg x}\), drugie, że \(\displaystyle{ \tg x=z\Rightarrow x=\arctan z}\) i z tego można wyliczyć na co "zamieni się" \(\displaystyle{ dx}\). Ale zostaje jeszcze \(\displaystyle{ \cos^2 x}\), który jak się okazuje nie jest problemem, wystarczy skorzystać z tożsamości \(\displaystyle{ \frac{1}{\cos^2 x}=1+\tg^2 x}\).

ODPOWIEDZ