Strona 1 z 1

Zbieżność szeregu

: 17 cze 2011, o 17:40
autor: fivi91
Witam!

Określ, czy szereg jest zbieżny czy rozbieżny: \(\displaystyle{ \sum_{0}^{ \infty } \frac{5^{n}+n^{3}}{10^{n}+n^{2}}}\)

Próbowałam z kryterium d'Alamberta, ale nie widzę nic co dałoby się poskracać. Z Cauchy'ego nie wygląda to lepiej.

Mogę prosić o pomoc? :)

Zbieżność szeregu

: 17 cze 2011, o 17:42
autor: mateuszek89
sprawdź warunek konieczny zbieżności szeregów. pozdrawiam!

Zbieżność szeregu

: 17 cze 2011, o 18:13
autor: fivi91
Z warunku koniecznego wychodzi mi lim=0 więc powinna być zbieżność. Tak też jest w odpowiedziach, R=2.

Zbieżność szeregu

: 17 cze 2011, o 18:14
autor:
Użyj kryterium Cauchy'ego, a następnie twierdzenia o trzech ciągach.

Q.

Zbieżność szeregu

: 17 cze 2011, o 18:19
autor: mateuszek89
Przepraszam. Źle spojrzałem na licznik i mianownik i jakoś mi utrwaliło się w pamięci, że \(\displaystyle{ 10^n}\) jest w liczniku. z kryterium cauchy'ego chyba idzie. Podziel licznik i mianownik przez \(\displaystyle{ 10^n}\) przy liczeniu granicy. Przepraszam jeszcze raz za niedopatrzenie.

Zbieżność szeregu

: 17 cze 2011, o 18:44
autor: fivi91
\(\displaystyle{ \lim_{n \to \infty } \sqrt[n]{\frac{5^{n}+n^{3}}{10^{n}+n^{2}}} = \lim_{n \to \infty } \sqrt[n]{ \frac{( \frac{1}{2} )^{n}+\frac{n^{3}}{10^{n}}}{1+ \frac{n^{2}}{10^{n}}}} = \lim_{n \to \infty } \sqrt[n]{ \frac{ \frac{n^{3}}{10^{n}}}{1+ \frac{n^{2}}{10^{n}}}} = \lim_{n \to \infty } \sqrt[n]{ \frac{ n^{3}}{10^{n}+ n^{2}}} = \lim_{n \to \infty } \frac{ n^{\frac{3}{n}}}{ \sqrt[n]{10^{n}+ n^{2}}} = \lim_{n \to \infty } \frac{1}{ \sqrt[n]{10^{n}+ n^{2}}}}\)

Spróbowałam i doszłam dotąd. Nie chcę nadużywać uprzejmości, ale tu się zacinam. Mogę prosić o podpowiedź?

Zbieżność szeregu

: 17 cze 2011, o 18:51
autor:
Nie można bezkarnie z niektórymi \(\displaystyle{ n}\) przechodzić do granicy, a z innymi nie, inaczej dałoby się napisać:
\(\displaystyle{ e=\lim_{n\to\infty} \left( 1+\frac 1n\right)^n =\lim_{n\to\infty} 1^n=\lim_{n\to\infty}1=1}\)
Jeśli przechodzimy do granicy, to od razu z wszystkimi.

Żeby skorzystać z twierdzenia o trzech ciągach, chcielibyśmy jakoś oszacować:
\(\displaystyle{ \ldots \le \sqrt[n]{\frac{5^{n}+n^{3}}{10^{n}+n^{2}}} \le \ldots}\)
Nietrudno pokazać (na przykład indukcyjnie), że zachodzą nierówności \(\displaystyle{ n^3\le 5^n}\) oraz \(\displaystyle{ n^2\le 10^n}\). Tak więc stosowne szacowania to:
\(\displaystyle{ \sqrt[n]{\frac{5^{n}}{10^{n}+10^n}}\le \sqrt[n]{\frac{5^{n}+n^{3}}{10^{n}+n^{2}}} \le \sqrt[n]{\frac{5^{n}+5^n}{10^{n}}}}\)
Łatwo wykazać, że skrajne ciągi w tej nierówności dążą do \(\displaystyle{ \frac 12}\), a zatem środkowy również.

Q.

Zbieżność szeregu

: 17 cze 2011, o 18:56
autor: fivi91
Teraz już wszystko widze dziękuje!