Strona 1 z 1

Z talii 52 kart losujemy - sprawdzenie poprawności

: 29 maja 2011, o 16:01
autor: Laico
Z talii 52 kart do gry losujemy 1 kartę i nie oglądając jej wkładamy do drugiej talii, zawierającej również 52 karty. Następnie z drugiej talii losujemy jedną kartę. Oblicz prawd., że:
a)wylosowana karta jest asem
b)wylosowana karta z pierwszej talii nie była asem, jeśli wiadomo, że z drugiej talii wylosowaliśmy asa

Czy ktoś mógłby sprawdzić, czy dobrze rozumuję?

\(\displaystyle{ A _{1}}\) wylosowana karta z 1 talii jest asem
\(\displaystyle{ A _{2}}\) wylosowana karta z 2 talii jest asem
\(\displaystyle{ B _{1}}\) wylosowana karta z 1 talii nie jest asem
\(\displaystyle{ B _{2}}\) wylosowana karta z 2 talii nie jest asem

a)
\(\displaystyle{ P(A _{1} \cap A _{2} \cup B _{1} \cap A _{2})= \frac{4}{52} \cdot \frac{5}{53}+ \frac{48}{52} \cdot \frac{4}{53} = \frac{20}{2756}+ \frac{192}{2756} = \frac{212}{2756}}\)

b)
\(\displaystyle{ P( \frac{B_{1}}{A _{2}})= \frac{P( B_{1} \cap A _{2})}{P( A_{2}) }= \frac{ \frac{48}{52} \cdot \frac{4}{53}}{ \frac{212}{2756} }= \frac{192}{212}}\)

Z talii 52 kart losujemy - sprawdzenie poprawności

: 29 maja 2011, o 22:41
autor: mat_61
Pomijając drobne uwagi co do zapisu jest OK. Co najwyżej należałoby skrócić ułamki:

\(\displaystyle{ \frac{212}{2756}= \frac{1}{13}}\)

\(\displaystyle{ \frac{192}{212}= \frac{48}{53}}\)