Wykresy funkcji, srodek odcinka

Wszelkiego rodzaju zadania nie dotyczące funkcji w działach powyżej lub wiążace więcej niż jeden typ funkcji. Ogólne własności. Równania funkcyjne.
1exam
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 28 lis 2004, o 12:57

Wykresy funkcji, srodek odcinka

Post autor: 1exam » 28 lis 2004, o 12:58

zatrzymalem sie na kolejnych trzech zadaniach . Czy moglby ktos mi w stanie pomoc.

1] wykres funkcji f przesunieto o wektor u. podaj wzor funkcji, ktorej wykres otrzymano, jesli:
a)f(x)=2x-1, wektor u=[-3;5]
bf(x)=3: (x-1), wektor u=[4;1]

2]wykres funcji g otrzymano w wyniku przesuniecia wykresu funkcji f. Podaj wspolrzedne wektora przesunicia, jesli:

a)f(x)=sinx g(x)=sin(x-4)
b)f(x)=x^20, g(x)=(x+2)^20 +1

3]korzystajac z wlasnosci wektorow udowodnij ze srodek odcinka o koncach A=(x1,y1),B=(x2,y2) ma wspolrzedne C=(x1+x2:2,y1+y2:2)

niewiem co mam z tym zrobic...rece mi opadaja jak widze te zadania
prosze o jasne i wyraziste odpowiedzi.
Z gory dziekuje

Pisz regulaminowe tematy! - gnicz

oczek
Użytkownik
Użytkownik
Posty: 27
Rejestracja: 26 lis 2004, o 13:25
Płeć: Mężczyzna
Lokalizacja: wawa

Wykresy funkcji, srodek odcinka

Post autor: oczek » 28 lis 2004, o 13:50

niech Ci bedzie:
a)f(x)=2x-1 i wektor u=[-3;5]
y=(2(x-(-3)-1)+5
b)f(x)=3/(x-1)
u=[4;1]
y=(3/(x-4-1))+1
Ogolna zasada
wektor
u=[a;b]
to mamy y=f(x-a)+b
Zad 2 podobnie->
a)u=[4;0]
b)u=[-2;1]

1exam
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 28 lis 2004, o 12:57

Wykresy funkcji, srodek odcinka

Post autor: 1exam » 28 lis 2004, o 14:08

dziekuje :)
a na 3 :>

Tupek
Użytkownik
Użytkownik
Posty: 12
Rejestracja: 29 lis 2004, o 15:10
Płeć: Mężczyzna
Lokalizacja: Gdańsk

Wykresy funkcji, srodek odcinka

Post autor: Tupek » 29 lis 2004, o 15:29

Środek odcinka na płaszczyźnie:

|----------|----------|
A...........C............B )

jeżeli AC=CB, to:

C=(xC, yC)=(xA+xB:2,yA+yB:2)=(x1+x2:2,y1+y2:2)


tak mi się wydaje nic więcej nie jestem w stanie wymyślić

------------------------------
Ps. Jeżeli złe oznaczenia to prosze poprawić

Pozdrawiam

W_Zygmunt
Użytkownik
Użytkownik
Posty: 545
Rejestracja: 1 wrz 2004, o 22:47
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 53 razy

Wykresy funkcji, srodek odcinka

Post autor: W_Zygmunt » 2 gru 2004, o 12:42

1exam pisze:
3]korzystajac z wlasnosci wektorow udowodnij ze srodek odcinka o koncach A=(x1,y1),B=(x2,y2) ma wspolrzedne C=(x1+x2:2,y1+y2:2)
Proszę Panów tego się nie da udowodnć- przypomnijcie sobie kolejośc wykonywania działań!!

Twierdzenie, że ze srodek S odcinka o koncach A=(x1,y1),B=(x2,y2) ma wspolrzedne S=((x1+x2):2,(y1+y2):2) dowozi się przy pomocy wlasnosci wektorow w ten sposób:


WEK(O,A) + WEK(A,S)= WEK(O,S)
WEK(O,S) + WEK(S,B)= WEK(O,B)
Ale WEK(A,S)=WEK(S,B)
WEK(O,S) + WEK(A,S)= WEK(O,B)

WEK(O,S) = WEK(O,B) - WEK(A,S)
WEK(O,S) = WEK(O,A) + WEK(A,S)
Dodając stronami
2*WEK(O,S) = WEK(O,A) + WEK(O,B)
WEK(O,S) = 1/2 * (WEK(O,A) + WEK(O,B))
Rozpisując na współrzędne
(xs-0,ys-0) = 1/2 * [(xa-0,ya-0)+(xb-0,yb-0)]
(xs,ys) = 1/2*(xa+xb,ya+yb)

ODPOWIEDZ