pochodne funkcji
: 11 mar 2011, o 20:41
proszę o sprawdzenie pochodnych
\(\displaystyle{ \left( \sqrt{\ln \left( x^{2}+1 \right) - \arcsin x +3} \right) ^{\prime}= \frac{1}{2 \cdot \sqrt{\ln \left( x^{2}+1 \right) - \arcsin x +3}} \cdot \left( \ln \left( x^{2}+1 \right) - \arcsin x +3} \right) ^{\prime}=\frac{1}{2 \cdot \sqrt{ln \left( x^{2}+1 \right) - \arcsin x +3}} \cdot \left( \frac{1}{x^{2}+1}- \frac{1}{ \sqrt{1-x^{2}} } \right) \\ \\ \left( \arctan x +\arctan \frac{1}{x} \right) ^{\prime}= \frac{1}{1+x^{2}} + \frac{1}{1+ \frac{1}{x^{2}} }}\)
\(\displaystyle{ \left( \sqrt{\ln \left( x^{2}+1 \right) - \arcsin x +3} \right) ^{\prime}= \frac{1}{2 \cdot \sqrt{\ln \left( x^{2}+1 \right) - \arcsin x +3}} \cdot \left( \ln \left( x^{2}+1 \right) - \arcsin x +3} \right) ^{\prime}=\frac{1}{2 \cdot \sqrt{ln \left( x^{2}+1 \right) - \arcsin x +3}} \cdot \left( \frac{1}{x^{2}+1}- \frac{1}{ \sqrt{1-x^{2}} } \right) \\ \\ \left( \arctan x +\arctan \frac{1}{x} \right) ^{\prime}= \frac{1}{1+x^{2}} + \frac{1}{1+ \frac{1}{x^{2}} }}\)