Strona 1 z 1
udowodnić nie podzielność
: 8 sty 2011, o 00:20
autor: FEMO
Niech n będzie liczbą całkowitą \(\displaystyle{ \ge 2}\). Udowodnić, że n nie dzieli \(\displaystyle{ 2^{n} -1}\).
prosze o wskazówki jak rozwiązać to zadanie
udowodnić nie podzielność
: 8 sty 2011, o 09:38
autor: Pingwin94
A więc na samym początku trzeba zauważyć że pod lupę bierzemy jedynie n nieparzyste.
(Jako że wyrażenie daje zawsze wynik w postaci liczby nieparzystej nie podzielimy jej nigdy przez liczbę parzystą).
Skoro już to wiemy możemy od razu odrzucić wszystkie liczby pierwsze korzystając z małego twierdzenia Fermata, gdyż każda liczba z n pierwszym \(\displaystyle{ 2 ^{n}}\) będzie przystawała do 2 (mod n).
Zauważ jeszcze, że \(\displaystyle{ 2 ^{n}}\) zawsze będzie przystawało do parzystej liczby (mod n).
udowodnić nie podzielność
: 24 wrz 2011, o 12:49
autor: Vax
Pingwin94 pisze:Zauważ jeszcze, że \(\displaystyle{ 2 ^{n}}\) zawsze będzie przystawało do parzystej liczby (mod n).
?
Dla
\(\displaystyle{ n\ge 2}\) ma zachodzić
\(\displaystyle{ n | 2^n-1}\), oczywiście
\(\displaystyle{ 2 \nmid n}\). Niech teraz
\(\displaystyle{ p}\) będzie najmniejszym dzielnikiem pierwszym
\(\displaystyle{ n}\), oraz
\(\displaystyle{ t = ord_p 2}\), musi więc zachodzić
\(\displaystyle{ t | n}\), oraz z twierdzenia Eulera dostajemy
\(\displaystyle{ 2^{p-1} \equiv 1 \pmod{p}}\), skąd
\(\displaystyle{ t | p-1}\), czyli
\(\displaystyle{ t \le p-1 < p}\) ale z założenia p jest najmniejszym dzielnikiem pierwszym n, więc
\(\displaystyle{ t=1}\), czyli
\(\displaystyle{ 2 \equiv 1 \pmod{p} \Leftrightarrow p=1}\) ale z założenia p jest pierwsze, czyli n nie ma dzielników pierwszych, co bezpośrednio implikuje
\(\displaystyle{ n=1}\), ale z założenia
\(\displaystyle{ n\ge 2}\) więc dana podzielność nie zajdzie dla żadnego n, cnd.