Strona 1 z 1

liczba neparzysta

: 19 gru 2010, o 11:40
autor: gelo21
Niech \(\displaystyle{ a(k)}\) będzie największą liczbą nieparzystą przez, którą dzieli się k. Pokazać, że \(\displaystyle{ \sum_{i=1}^{2 ^{n} } a(k)= \frac{4 ^{n}+2 }{3} .}\)

liczba neparzysta

: 19 gru 2010, o 16:37
autor: marcinz
Liczbę naturalną (>0) możesz przedstawić jednoznacznie w postaci \(\displaystyle{ 2^t m}\), gdzie \(\displaystyle{ t \in N, m}\) jest liczbą nieparzystą. Dla liczby tej postaci łatwo odczytać \(\displaystyle{ s(k)}\). Policz fragment rozważanej sumy przy ustalonym \(\displaystyle{ t}\) (czyli \(\displaystyle{ \sum_{m=1,m-nieparzyste}^{2^{n-t}} s(2^t m)}\) ), a potem wysumuj po wszystkich \(\displaystyle{ t}\) z rozważanego zakresu.