trójkat równoboczny

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
darek20
Użytkownik
Użytkownik
Posty: 874
Rejestracja: 4 paź 2010, o 08:16
Płeć: Mężczyzna
Lokalizacja: wszedzie

trójkat równoboczny

Post autor: darek20 » 13 gru 2010, o 16:02

Pokaż że trójkąt \(\displaystyle{ ABC}\) jest równoboczny wtedy i tylko wtedy gdy \(\displaystyle{ (\sin B+\sin C)^2=\cos 2A+\frac 72.}\)

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1502
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice

trójkat równoboczny

Post autor: timon92 » 14 gru 2010, o 15:59

zauważmy że \(\displaystyle{ \cos 2A+\frac 72=(\sin B+\sin C)^2 \le \\ 4 \sin^2 \frac{B+C}{2} = 4 \sin^2 \frac{\pi - A}{2} = \\ 4 \cos^2 \frac{A}{2} \le \cos 2A+\frac 72}\) pierwsza nierówność wynika z Jensena dla wklęsłej funkcji sinus, a druga nierówność po drobnych przekształceniach jest równoważna takiej \(\displaystyle{ (1-2 \cos A)^2 \ge 0}\) czyli tam muszą zachodzić równości, tzn. \(\displaystyle{ B=C}\) i \(\displaystyle{ \cos A = \frac{1}{2}}\), czyli \(\displaystyle{ A=B=C=\frac{\pi}{3}}\)

ODPOWIEDZ