Ciąg rekurencyjny

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Heniek1991
Użytkownik
Użytkownik
Posty: 111
Rejestracja: 14 paź 2010, o 16:58
Płeć: Mężczyzna
Lokalizacja: Lublin / Warszawa
Podziękował: 1 raz
Pomógł: 1 raz

Ciąg rekurencyjny

Post autor: Heniek1991 » 16 lis 2010, o 23:16

Mamy taki ciąg:
\(\displaystyle{ a _{1} = \frac{1}{2}*c}\)
\(\displaystyle{ a _{n} = \frac{1}{2}\left( \frac{1}{2}*c + a _{n-1} ^{2} \right)}\)
gdzie \(\displaystyle{ c \in \left( 0, 1\right)}\)
Zastanawiam się, jak ściśle pokazać, że ciąg jest malejący.

Biorę \(\displaystyle{ a_{n} - a_{n+1} > 0}\) i dochodzę, do takiej sytuacji, że \(\displaystyle{ 2*a _{n} - 4* _{n} ^{2} + c < 0}\) Delta jest większa od zera.
\(\displaystyle{ x1 = \frac{2 - \sqrt{4-2*c} }{2}}\)
\(\displaystyle{ x2 = \frac{2 + \sqrt{4-2*c} }{2}}\)
Mam przedział, który jest rozwiązaniem tej nierówności (x1, x2).

ODPOWIEDZ