Moduł Kirchhoffa obliczenie?

korek1916
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 10 lis 2010, o 19:52
Płeć: Mężczyzna
Lokalizacja: Mazowsze

Moduł Kirchhoffa obliczenie?

Post autor: korek1916 » 10 lis 2010, o 20:26

Witam. Mam do policzenie moduł Kirchhoffa. Oto dane: długość ramienia - 300 mm siła P [N] - 125 co w rezultacie daje moment skręcający Ms = (r x P) promień badanej rury cienkościennej R - 42,5 mm, odkształcenie zmierzone tensometrem \(\varepsilon \ = \ 140,5 / mikrometra\) Bardzo prosze o obliczenie wartości G = \(\frac{Ms} {4 \pi \ R^{2} \varepsilon}\) Te jednostki sprawiaja że wynik wychodzi mi nierealny. Prosze o pomoc. Z góry dziekuję.

Jezalov
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 25 wrz 2009, o 23:47
Płeć: Mężczyzna

Moduł Kirchhoffa obliczenie?

Post autor: Jezalov » 10 lis 2010, o 21:18

\(\frac{Ms} {4 \pi \ R^{2} \varepsilon}= \frac{3 \cdot 10^2 \cdot 10^{-3} \cdot 125}{4 \cdot 3,14 \left( 42,5 \cdot 10^{-3}\right)^2 \cdot 140,5 \cdot 10^{-6}}= \frac{375 \cdot 10^{-1}}{1764,68 \cdot 10^{-6} \cdot 1806,25 \cdot 10^{-6}} = \frac{375 \cdot 10^{-1}}{3187456,2 \cdot 10^{-12}}= \frac{375 \cdot 10^{-1}}{31,874532 \cdot 10^{-7}} \approx 11,764 \cdot 10^6\)

korek1916
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 10 lis 2010, o 19:52
Płeć: Mężczyzna
Lokalizacja: Mazowsze

Moduł Kirchhoffa obliczenie?

Post autor: korek1916 » 10 lis 2010, o 21:28

Kurczę bardzo mi przykro ale zapomniałem o dodaniu jeszcze jednej waznej informacji. Mianowicie grubośc ścianki \(/delta\) = 1mm. To w znacznym stopniu wpłynie na koncowy efekt. a poprawny wzór to: \(G = \frac {M_{s}} {4\pi R^{2} \delta\varepsilon}\) Przepraszam, ale jestem tu świeży i nie za bardzo sie jeszcze orientuję z LaTeX. Mógłbym prosic o ponowne policzenie?-- 10 lis 2010, o 22:30 --\(\delta = 1mm\)

Jezalov
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 25 wrz 2009, o 23:47
Płeć: Mężczyzna

Moduł Kirchhoffa obliczenie?

Post autor: Jezalov » 10 lis 2010, o 21:40

\(...=\frac{375 \cdot 10^{-1}}{31,874532 \cdot 10^{-7} \cdot 10^{-3}}=\frac{375 \cdot 10^{-1}}{31,874532 \cdot 10^{-10} } \approx 11,764 \cdot 10^9\)

korek1916
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 10 lis 2010, o 19:52
Płeć: Mężczyzna
Lokalizacja: Mazowsze

Moduł Kirchhoffa obliczenie?

Post autor: korek1916 » 10 lis 2010, o 22:16

Coś dziwnie to wygląda. Na zajeciach wychodziło coś takiego: = \(\frac {125 * 10^{2} * 3*10^{2}*10^{6}} {4\pi (2,45)^{2}*10^{2}*1,405*10^{2}}\) Czy ktoś mi wytłumaczy dlaczego, skąd i jak to powstało?

Jezalov
Użytkownik
Użytkownik
Posty: 122
Rejestracja: 25 wrz 2009, o 23:47
Płeć: Mężczyzna

Moduł Kirchhoffa obliczenie?

Post autor: Jezalov » 10 lis 2010, o 22:25

Coś pokręciłeś mając takie dane jakie podałeś to nic się tu nie zgadza...

korek1916
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 10 lis 2010, o 19:52
Płeć: Mężczyzna
Lokalizacja: Mazowsze

Moduł Kirchhoffa obliczenie?

Post autor: korek1916 » 10 lis 2010, o 22:35

Posłuchaj to jest przepisane z tablicy, sam profesor to liczył.. tym bardziej że współczynnik G dla mosiądzu wynosi około \(0,36\cdot 10^{5} MPa\).. dlatego cos mi tu nie gra... W ostatnim wierszy wyszło.. \(\frac {3,75 \cdot 10^{12}} {tutaj\ nie\ zdazylem\ przepisac}\)-- 10 lis 2010, o 23:55 --Jeszcze raz na spokojnie to są owe dane: P = 125 [N], r(długość ramienia) - 300 mm, z czego otrzymujemy Ms. \(\delta = 0,1mm\), promień rury, czyli nasze R = 24,5 mm, a nasze odkształcenie \(\varepsilon = 140,5 \mu m/m\) Liczymy do tego wzoru \(G = \frac {M_{s}} {4\pi R^{2} \delta\varepsilon}\).

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa

Moduł Kirchhoffa obliczenie?

Post autor: steal » 11 lis 2010, o 00:42

Ja chciałbym tylko dodać, że tytuł profesora nie gwarantuje nieomylności.

ODPOWIEDZ