Monotoniczność ciągu

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
korass
Użytkownik
Użytkownik
Posty: 10
Rejestracja: 23 kwie 2006, o 12:13
Płeć: Mężczyzna
Lokalizacja: Poznań

Monotoniczność ciągu

Post autor: korass » 8 lis 2006, o 18:24

Ciąg \(\displaystyle{ {a_{n}}}\) jest ciągiem rosnącym, zbadaj monotoniczność ciągu \(\displaystyle{ {b_{n}}}\) jeśli \(\displaystyle{ b_{n}=a_{n}-a_{n+1}}\). Czy to zadanie w ogóle da się jednoznacznie rozwiązać?

Awatar użytkownika
Doktor
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 4 lis 2006, o 23:01
Płeć: Mężczyzna
Lokalizacja: Warszawa/Kolno

Monotoniczność ciągu

Post autor: Doktor » 8 lis 2006, o 18:57

no nie wiem :P ale monotonicznośc sprawdzam dla ciągu b: \(\displaystyle{ b_{n+1} - b_{n}= a_{n+1} - a_{n+2} - (a_{n} - a_{n+1}\\ \Delta =b_{n+1} - b_{n}\\ \Delta = 2a_{n+1} -(a_{n+2} +a_{n})\\}\) Dla arytmetycznego ciągu : \(\displaystyle{ \Delta= 0}\) Dla geometrycznego: \(\displaystyle{ \Delta= a_{n} \cdot(q-1)^2}\) z zadania wiemy ze ciąg a był rosnący a więc \(\displaystyle{ a_{n}>0 \wedge q>1}\) lub \(\displaystyle{ a_{n} ale wiemy, że \(\displaystyle{ \forall q\in R_{+}-(1) : (q-1)^2>0}\), więc \(\displaystyle{ \Delta}\) jest uzależniona od \(\displaystyle{ a_{n}}\) znak delty bedzie oznaczał monotonicznośc ciągu
Ostatnio zmieniony 8 lis 2006, o 19:09 przez Doktor, łącznie zmieniany 2 razy.

korass
Użytkownik
Użytkownik
Posty: 10
Rejestracja: 23 kwie 2006, o 12:13
Płeć: Mężczyzna
Lokalizacja: Poznań

Monotoniczność ciągu

Post autor: korass » 8 lis 2006, o 19:02

Właśnie też mi się wydaje, że bez założenia że ciąg jest arytmetyczny lub geometryczny nie można udzielić pewnej odpowiedzi na zadanie. Nie znamy w końcu stosunków kolejnych wyrazów ciągu \(\displaystyle{ a_{n}}\), a tą różnicę można ewentualnie trochę bardziej przejrzyście zapisać...

Awatar użytkownika
Calasilyar
Gość Specjalny
Gość Specjalny
Posty: 2656
Rejestracja: 2 maja 2006, o 21:42
Płeć: Mężczyzna
Lokalizacja: Wrocław/Sieradz

Monotoniczność ciągu

Post autor: Calasilyar » 8 lis 2006, o 21:18

racja, Doktor, trochę pogmatwałeś, można to zapisac: \(\displaystyle{ b_{n+1}-b_{n}=-(a_{n+2}-a_{n+1})+(a_{n+1}-a_{n})}\) i wtedy widac zależnosc od tego, czy różnice rosną są stałe, czy maleją

ODPOWIEDZ