Reakcje podpór belki opartej o ściane

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 3 wrz 2010, o 18:21

Jednorodna belka o dlugosci L i ciężarze G przymocowana jest do podłogi przez stałą podpore przegubową. Drugi koniec opiera się o ścianę o kącie pochylenia beta = 50 stopni. Wyznaczyć reakcje R1 i R2 jeżeli kąt alfa = 20 stopni.



Interesuje mnie głównie jak znaleźć kąt B i A, szczególnie kąt B potrzebny jest do równań równowagi. Pozostałe potrzebne kąty udało mi się już wyznaczyć bo to dość proste ale nie mam pojęcia jak wyznaczyć kąt B i A w zadaniach tego typu, zastanawiam się nad jakimiś proporcjami miedzy trójkątami ale nic niewychodzi.

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa
Podziękował: 6 razy
Pomógł: 160 razy

Reakcje podpór belki opartej o ściane

Post autor: steal » 3 wrz 2010, o 18:52

W tym zadaniu nie trzeba szukać tych kątów.
Jesteś w stanie zapisać równowagę momentów względem podpory nie używając podstawowej postaci wzoru na moment tzn. \(\displaystyle{ M=F\cdot r \cdot sin\alpha}\), ale wersji \(\displaystyle{ M=F\cdot d}\), gdzie d jest najkrótszym odcinkiem między linią działania siły a punktem względem którego wyznaczamy moment?

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 3 wrz 2010, o 23:37

Nie wiem czy o to chodzi i czy dobrze zapisałem równanie momentów względem podpory 1:
\(\displaystyle{ \frac{L}{2} \cdot \cos 20 ^{0} \cdot G = L \cdot \sin 60 ^{0} \cdot R2}\)

\(\displaystyle{ R2 = \frac{1}{2} \cdot \frac{\cos 20 ^{0}}{\sin 60 ^{0}} \cdot G}\)

To tyle, niewiem dalej jak wyznaczyć R1.

Ten sposób z momentami byłby pewnie łatwy ale zadanie jest z tematu drugiego a używanie momentów jest dopiero od 4 tematu więc trzeba to rozwiązać bez momentów. Trzeba znaleźć chyba koniecznie kąt B.

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa
Podziękował: 6 razy
Pomógł: 160 razy

Reakcje podpór belki opartej o ściane

Post autor: steal » 4 wrz 2010, o 00:33

Zamiast 20 stopni powinien być inny kąt.
A powiedz teraz jaki warunek dla sił działających na ciało musi być spełniony aby ciało pozostawało w spoczynku (co jak wiemy dla tej belki zachodzi), i jakie ma to przełożenie na interpretację sił jako wektory?

PS Jeżeli chcesz znaleźć te kąty to wystarczy, że rozwiążesz ten układ równań:
\(\displaystyle{ \begin{cases} cos(\alpha + B)=\frac{\frac{L}{2}cos\alpha}{a} \\ A+B+110^o=180^o \\ \frac{L}{sin(A+50^o)}=\frac{a}{sin60^o} \end{cases}}\)

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 6 wrz 2010, o 13:30

Chodzi o to, że suma rzutów sił na osie układu współrzędnych dają wartości = 0. A w interpretacji wektorowej siły tworzą wielobok zamknięty?

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa
Podziękował: 6 razy
Pomógł: 160 razy

Reakcje podpór belki opartej o ściane

Post autor: steal » 6 wrz 2010, o 13:32

Tak. Stąd wyznaczysz reakcję w podporze.

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 6 wrz 2010, o 13:35

A jaki kąt powinien być zamiast tych 20 stopni?

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa
Podziękował: 6 razy
Pomógł: 160 razy

Reakcje podpór belki opartej o ściane

Post autor: steal » 6 wrz 2010, o 13:43

\(\displaystyle{ 70^o}\)

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 6 wrz 2010, o 14:39

Jeżeli chcesz znaleźć te kąty to wystarczy, że rozwiążesz ten układ równań:
\(\displaystyle{ \begin{cases} cos(\alpha + B)=\frac{\frac{L}{2}cos\alpha}{a} \\ A+B+110^o=180^o \\ \frac{L}{sin(A+50^o)}=\frac{a}{sin60^o} \end{cases}}\)
Z tego wychodzi mi, żę kąt \(\displaystyle{ B \approx 29^o}\) a \(\displaystyle{ A \approx 41^o}\). To chyba jest źle.

Awatar użytkownika
steal
Użytkownik
Użytkownik
Posty: 1043
Rejestracja: 7 lut 2007, o 18:35
Płeć: Mężczyzna
Lokalizacja: Białystok|Warszawa
Podziękował: 6 razy
Pomógł: 160 razy

Reakcje podpór belki opartej o ściane

Post autor: steal » 6 wrz 2010, o 16:14

A dlaczego ma być źle?

tomasw89
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 3 wrz 2010, o 16:55
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 1 raz

Reakcje podpór belki opartej o ściane

Post autor: tomasw89 » 6 wrz 2010, o 17:13

Bo jak narysuje sobie taki układ z zachowaniem kątów to sprawdzając kontomierzem wychodzi \(\displaystyle{ B \approx 37^o A \approx 33^o}\)-- 7 wrz 2010, o 17:21 --A nie, jednak mój błąd w obliczeniach. Wzory są dobre. Wielkie dzięki za pomoc.

ODPOWIEDZ