Rozwiązanie nierówności złożonej

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
kosmos92
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 18 sie 2010, o 13:33
Płeć: Mężczyzna
Lokalizacja: Bytom

Rozwiązanie nierówności złożonej

Post autor: kosmos92 » 18 sie 2010, o 13:38

Witam, proszę o rozwiązanie tej nierówności, z góry dziękuję.

\(\displaystyle{ 1>2x-3 \ge 1- \frac{1}{2} x}\)

Morgus
Użytkownik
Użytkownik
Posty: 224
Rejestracja: 28 sty 2007, o 10:28
Płeć: Mężczyzna
Lokalizacja: Lublin/Warszawa
Podziękował: 4 razy
Pomógł: 55 razy

Rozwiązanie nierówności złożonej

Post autor: Morgus » 18 sie 2010, o 13:44

Traktujesz to jak dwie nierówności:
\(\displaystyle{ 1>2x-3 \ \ i \ \ 2x-3\ge 1- \frac{1}{2} x}\)
Z pierwszego:\(\displaystyle{ x<2}\)
Z drugiego:\(\displaystyle{ x \ge \frac{8}{5}}\)
Ostatecznie: \(\displaystyle{ \frac{8}{5} \le x <2}\)

kosmos92
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 18 sie 2010, o 13:33
Płeć: Mężczyzna
Lokalizacja: Bytom

Rozwiązanie nierówności złożonej

Post autor: kosmos92 » 18 sie 2010, o 13:49

odpowiedz mam zapisać w postaci przedziału. Nie wiem czy się bierze część wspólną, czy sumę.

piasek101
Użytkownik
Użytkownik
Posty: 23226
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3182 razy

Rozwiązanie nierówności złożonej

Post autor: piasek101 » 18 sie 2010, o 13:56

i = iloczyn = część wspólna

kosmos92
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 18 sie 2010, o 13:33
Płeć: Mężczyzna
Lokalizacja: Bytom

Rozwiązanie nierówności złożonej

Post autor: kosmos92 » 18 sie 2010, o 14:07

Dziękuję bardzo za pomoc.

ODPOWIEDZ