wyznaczyć asymptoty funkcji

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
ola_wawa_pw
Użytkownik
Użytkownik
Posty: 10
Rejestracja: 10 sie 2010, o 16:27
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 2 razy

wyznaczyć asymptoty funkcji

Post autor: ola_wawa_pw » 15 sie 2010, o 16:47

Cześć
Wyznaczyć asymptoty funkcji :
\(\displaystyle{ f(x) = ln( e ^{x} ) - ln( x^{2} +1)}\)
\(\displaystyle{ f(x) = ln(e^{x}) - ln(x^{2} +1) = x- ln(x^2 +1)}\)

miodzio1988

wyznaczyć asymptoty funkcji

Post autor: miodzio1988 » 15 sie 2010, o 17:50

http://pl.wikipedia.org/wiki/Asymptota

Wstawiasz do wzorów. Zacznij od dziedziny. Problem to?

Awatar użytkownika
gott314
Użytkownik
Użytkownik
Posty: 233
Rejestracja: 15 kwie 2009, o 16:48
Płeć: Mężczyzna
Podziękował: 8 razy
Pomógł: 38 razy

wyznaczyć asymptoty funkcji

Post autor: gott314 » 16 sie 2010, o 14:19

\(\displaystyle{ f(x)=\ln\frac{e^x}{x^2+1}}\)
1. Obliczamy dziedzinę: \(\displaystyle{ x\in \mathbb{R}}\). Zatem nie ma asymptot pionowych.
2. Obliczamy granice w \(\displaystyle{ \pm \infty}\).
\(\displaystyle{ \lim_{x \to \infty} f(x) = \infty}\), bo z reguły de l'Hospitala (stosujemy ją dwukrotnie) dla funkcji \(\displaystyle{ \frac{e^x}{x^2+1}}\) mamy \(\displaystyle{ \frac{e^x}{2} \rightarrow \infty}\) przy \(\displaystyle{ x \rightarrow \infty}\).
\(\displaystyle{ \lim_{x \to -\infty} f(x) = -\infty}\), bo dla funkcji \(\displaystyle{ \frac{e^x}{x^2+1} \rightarrow 0}\) przy \(\displaystyle{ x \rightarrow -\infty}\).
Zatem nie ma asymptot poziomych.
3. Obliczamy odpowiednie wartości dla asymptoty ukośnej.
\(\displaystyle{ a= \lim_{x \to \pm\infty} \frac{f(x)}{x} = \lim_{ x\to \pm\infty } \frac{\ln\frac{e^x}{x^2 +1}}{x}=1}\) - wystarczy raz zastosować regułę de l'Hospitala.
\(\displaystyle{ b= \lim_{ x\to \pm\infty } f(x)-x = \lim_{ x\to \pm\infty } \ln\frac{e^x}{x^2+1}-x=\lim_{ x\to \pm\infty } \ln\frac{1}{x^2+1}=-\infty}\).
Zatem brak asymptot ukośnych.

ODPOWIEDZ