Praca przy podnoszeniu ciała

Ruch prostoliniowy, po okręgu, krzywoliniowy. rzuty. Praca, energia i moc. Zasady zachowania.
sailormoon88
Użytkownik
Użytkownik
Posty: 204
Rejestracja: 2 lut 2010, o 13:27
Płeć: Mężczyzna
Lokalizacja: polska
Podziękował: 1 raz
Pomógł: 24 razy

Praca przy podnoszeniu ciała

Post autor: sailormoon88 » 29 lip 2010, o 20:56

Witam,
Załóżmy, że ciało o masie m chcemy przenieść na wysokość h z powierzchni Ziemi. Pracę jaką należy wykonać wynosi:
\(\displaystyle{ E=mgh}\)
Jeżeli ciało będzie miało na początku prędkość, czy praca jaką należy wykonać będzie taka sama czy nie? W końcu prędkość ta spowoduje, że ciało zniesie się na pewną wysokość i zostanie mniej do pokonania. Z góry dzięki za odpowiedź.

pawels
Użytkownik
Użytkownik
Posty: 304
Rejestracja: 5 wrz 2009, o 20:15
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 33 razy

Praca przy podnoszeniu ciała

Post autor: pawels » 29 lip 2010, o 21:17

Nie znam się na fizyce, ale wydaje mi się że wystarczy ponownie zastosować zasadę zachowania energii pamiętając, że tym razem ciało posiada także energię kinetyczną.

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Praca przy podnoszeniu ciała

Post autor: luka52 » 29 lip 2010, o 21:18

I tak i nie - zależy od wartości i zwrotu wektora prędkości.

sailormoon88
Użytkownik
Użytkownik
Posty: 204
Rejestracja: 2 lut 2010, o 13:27
Płeć: Mężczyzna
Lokalizacja: polska
Podziękował: 1 raz
Pomógł: 24 razy

Praca przy podnoszeniu ciała

Post autor: sailormoon88 » 29 lip 2010, o 21:39

Czyli uwzględniamy prędkość na początku. Załóżmy, że ciało rzucamy w górę:
\(\displaystyle{ mgh-mV^2/2=W}\)
Teraz załóżmy, że wznosimy ciało ze stałym przyspieszeniem a na drodze h:
\(\displaystyle{ mgh+mV^2/2=W}\)
\(\displaystyle{ V^2=2ha}\)
\(\displaystyle{ mgh+mha=W}\)
Wykonujemy większą pracę.
Jak byśmy chcieli zatrzymać ciało na drodze h z prędkością początkową:
\(\displaystyle{ -mgh-mV^2/2=W}\)
Dobrze myślę?

marcinek92
Użytkownik
Użytkownik
Posty: 183
Rejestracja: 23 cze 2010, o 20:16
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 4 razy
Pomógł: 8 razy

Praca przy podnoszeniu ciała

Post autor: marcinek92 » 30 lip 2010, o 14:15

na początku masz tylko energię kinetyczną , a na końcu tylko potencjalną. Jeżeli są to stosunkowo niewielkie wysokości to korzystasz z tych wzorów , których w zasadzie nie rozumiem "Jak
byśmy chcieli zatrzymać ciało na drodze h z prędkością początkową", co to znaczy ?

Awatar użytkownika
miki999
Gość Specjalny
Gość Specjalny
Posty: 8691
Rejestracja: 28 lis 2007, o 18:10
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 36 razy
Pomógł: 1001 razy

Praca przy podnoszeniu ciała

Post autor: miki999 » 31 lip 2010, o 13:10

Pewne pojęcia tu są chyba mylone.

Po pierwsze:
jeżeli leci do góry z jakąś tam prędkością i bez ingerencji dolatuje do wysokości \(\displaystyle{ h_k>h}\), to aby wznieść ciało na wysokość \(\displaystyle{ h}\) trzeba wykonać zerową pracę (bo ciało samo w pewnym momencie osiągnie tę wysokość).

Chyba że chodzi o zatrzymanie ciała na pewnej wysokości:
1) Jeżeli było wystrzelone do góry i \(\displaystyle{ h_k>h}\) to musimy albo je wyhamować gdy leci do góry, albo wyhamować gdy wraca na dół (należy się zastanowić, czy wybór ma znaczenie).
2) Jeżeli \(\displaystyle{ h_k<h}\), to trzeba je dopchnąć.


Generalnie praca to zmiana energii, ale i iloczyn siły oraz przesunięcia.



Pozdrawiam.

ODPOWIEDZ