norma funkcjonału liniowego

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
RudaMa?aWied?ma
Użytkownik
Użytkownik
Posty: 58
Rejestracja: 28 lut 2010, o 13:57
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 3 razy

norma funkcjonału liniowego

Post autor: RudaMa?aWied?ma » 2 lip 2010, o 08:47

Niech \(\displaystyle{ H=L ^{2}(0;1).}\) Liczba 4 jest normą funkcjonału liniowego \(\displaystyle{ w: H \rightarrow C}\), jeśli w dane jest wzorem:
\(\displaystyle{ A) w(f)= \int_{0}^{1} x ^{- \frac{12}{25} }f(x)dx dla f \in H}\)
\(\displaystyle{ B) w(f)= \int_{0}^{1} x ^{ \sqrt{4} }f(x)dx dla f \in H}\)
\(\displaystyle{ C) w(f)= \int_{0}^{1} \sqrt{4}f(x)dx dla f \in H}\)

Może się okazać, że żadna odpowiedź nie jest prawdziwa, ale ja muszę wiedzieć jak to się oblicza i sprawdza-podobno bardzo prosto, ale nie moge tego nigdzie znaleźć ;/ jakby ktoś mógł mi to wytłumaczyć to byłoby super z góry wielkie dzięki!!!

Kamil_B
Użytkownik
Użytkownik
Posty: 1958
Rejestracja: 16 kwie 2009, o 16:56
Płeć: Mężczyzna
Lokalizacja: Wrocław
Pomógł: 361 razy

norma funkcjonału liniowego

Post autor: Kamil_B » 2 lip 2010, o 09:51


RudaMa?aWied?ma
Użytkownik
Użytkownik
Posty: 58
Rejestracja: 28 lut 2010, o 13:57
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 3 razy

norma funkcjonału liniowego

Post autor: RudaMa?aWied?ma » 2 lip 2010, o 19:22

a mógłbyś mi pomóc z tymi całkami?? bo sobie nie radzę
w moim mniemaniu powinnam sprawdzić czy te całki po podstawieniu wzoru z podnoszeniem do poteg, daja wynik 4 tak?? w sensie ta ktora daje jest odpowiednim wzorem.
i tak się blokuję na obliczeniach całkowych ;/
\(\displaystyle{ \left( \int_{0}^{1} \left( x ^{- \frac{12}{25} } \right) ^{2} \right) ^{ \frac{1}{2} } =...}\) dobrze to wogóle podstawiłam??
z całki \(\displaystyle{ \sqrt{4}}\) wyszedł mi \(\displaystyle{ \sqrt{4}}\) chociaż nie wiem czy dobrze...
a z \(\displaystyle{ x ^{ \sqrt{4} }}\) nic bo nie wiem jak ją obliczyć

Kamil_B
Użytkownik
Użytkownik
Posty: 1958
Rejestracja: 16 kwie 2009, o 16:56
Płeć: Mężczyzna
Lokalizacja: Wrocław
Pomógł: 361 razy

norma funkcjonału liniowego

Post autor: Kamil_B » 2 lip 2010, o 19:32

RudaMałaWiedźma pisze:w moim mniemaniu powinnam sprawdzić czy te całki po podstawieniu wzoru z podnoszeniem do poteg, daja wynik 4 tak?? w sensie ta ktora daje jest odpowiednim wzorem.
Tak.
RudaMałaWiedźma pisze: \(\displaystyle{ \left( \int_{0}^{1} \left( x ^{- \frac{12}{25} } \right) ^{2} \right) ^{ \frac{1}{2} } =...}\) dobrze to wogóle podstawiłam??
Dobrze.
RudaMałaWiedźma pisze: z całki \(\displaystyle{ \sqrt{4}}\) wyszedł mi \(\displaystyle{ \sqrt{4}}\) chociaż nie wiem czy dobrze...
Dobrze.
RudaMałaWiedźma pisze: a z \(\displaystyle{ x ^{ \sqrt{4} }}\) nic bo nie wiem jak ją obliczyć
Zauważ, że \(\displaystyle{ \sqrt{4}=2}\)

RudaMa?aWied?ma
Użytkownik
Użytkownik
Posty: 58
Rejestracja: 28 lut 2010, o 13:57
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 3 razy

norma funkcjonału liniowego

Post autor: RudaMa?aWied?ma » 2 lip 2010, o 20:06

to z \(\displaystyle{ x ^{ \sqrt{4} }}\) wszedł mi \(\displaystyle{ \sqrt{ \frac{1}{5} }}\)??
a tego trzeciego nie potrafie ugryźć ;/ \(\displaystyle{ \sqrt{ \int_{0}^{1} x ^{- \frac{24}{25} } }}\)
widzę, że z tego nie wyjdzie 4 ale i tak muszę miec to obliczone ;/

Kamil_B
Użytkownik
Użytkownik
Posty: 1958
Rejestracja: 16 kwie 2009, o 16:56
Płeć: Mężczyzna
Lokalizacja: Wrocław
Pomógł: 361 razy

norma funkcjonału liniowego

Post autor: Kamil_B » 2 lip 2010, o 21:27

RudaMałaWiedźma pisze:to z \(\displaystyle{ x ^{ \sqrt{4} }}\) wszedł mi \(\displaystyle{ \sqrt{ \frac{1}{5} }}\)??
Tak wychodzi.
RudaMałaWiedźma pisze: a tego trzeciego nie potrafie ugryźć ;/ \(\displaystyle{ \sqrt{ \int_{0}^{1} x ^{- \frac{24}{25} } }}\)
widzę, że z tego nie wyjdzie 4 ale i tak muszę miec to obliczone ;/
\(\displaystyle{ \int_{}^{}x^{a} \mbox{d}x =\frac{1}{a+1}x^{a+1}}\) dla \(\displaystyle{ a \neq -1}\)

ODPOWIEDZ