Ile liczb z przedizlau ma rozne cyfry?

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
bilskij
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 10 mar 2010, o 13:17
Płeć: Mężczyzna
Lokalizacja: Dydnia

Ile liczb z przedizlau ma rozne cyfry?

Post autor: bilskij » 23 cze 2010, o 12:51

Ile liczb parzystych z przedziału \(\displaystyle{ [100, 9999]}\) ma różne cyfry ?
Ostatnio zmieniony 23 cze 2010, o 13:55 przez Anonymous, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Awatar użytkownika
pelas_91
Użytkownik
Użytkownik
Posty: 837
Rejestracja: 7 cze 2007, o 19:39
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 119 razy
Pomógł: 71 razy

Ile liczb z przedizlau ma rozne cyfry?

Post autor: pelas_91 » 23 cze 2010, o 19:02

Odpowiedz sobie na następujące pytania:
1) Ile jest wszystkich liczb trzycyforowych o różnych cyfrach, które kończą się na 0, 2, 4, 6 lub 8?
2) Ile jest wszystkich liczb czterocyforowych o różnych cyfrach, które kończą się na 0, 2, 4, 6 lub 8?

bilskij
Użytkownik
Użytkownik
Posty: 11
Rejestracja: 10 mar 2010, o 13:17
Płeć: Mężczyzna
Lokalizacja: Dydnia

Ile liczb z przedizlau ma rozne cyfry?

Post autor: bilskij » 24 cze 2010, o 12:37

Jeśli wyliczę wariację z powtórzeniami dla wyrazu 4-elementowego z 10 elementów wychodzi 10000 (10^4). Gdy odejmę od tego wariację bez powtórzeń ( 10!/(7*8*9*10) ) pozostaną przypadku gdy wystąpią powtórzenia cyfr i będzie ich 4960.
Dzieląc przez 2 (1,3,5,7,9 to połowa z 10 elementów) pozostawiam tylko liczby nieparzyste - wychodzi 2480 możliwości.
Odejmuję 5 możliwości dla liczb nieparzystych z przedziału [0-99] - zostaje 2475 możliwości.

Pytanie, jak odjąć te przypadki gdy powtarzalną cyfrą było 0 i znajdowało się odpowiednio na pierwszej z 4 pozycji (czyli dawało niepoprawną liczbę zaczynającą się od 0)
Wynik powinien dać 2390 możliwości.

Może ktoś zaproponuje rozwiązanie?

Awatar użytkownika
pelas_91
Użytkownik
Użytkownik
Posty: 837
Rejestracja: 7 cze 2007, o 19:39
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 119 razy
Pomógł: 71 razy

Ile liczb z przedizlau ma rozne cyfry?

Post autor: pelas_91 » 24 cze 2010, o 15:03

Gdy odejmę od tego wariację bez powtórzeń ( 10!/(7*8*9*10) ) pozostaną przypadku gdy wystąpią powtórzenia cyfr i będzie ich 4960.
Ale przecież Ty właśnie chcesz aby cyfry się nie powtarzały, a liczysz odwrotnie.

Colos
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 15 wrz 2010, o 16:23
Płeć: Mężczyzna
Lokalizacja: Rzeszow

Ile liczb z przedizlau ma rozne cyfry?

Post autor: Colos » 15 wrz 2010, o 16:45

bilskij pisze: Wynik powinien dać 2390 możliwości.

Z kot to wiesz ?????


bo mam teraz take zadanie na egzaminie ...
i mam mozliwe rozwozanie ale nie 2390 a 2624

ODPOWIEDZ