całka z pierwiastkiem

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Awatar użytkownika
fanch
Użytkownik
Użytkownik
Posty: 524
Rejestracja: 14 paź 2006, o 16:56
Płeć: Mężczyzna
Lokalizacja: z Polski
Podziękował: 36 razy
Pomógł: 82 razy

całka z pierwiastkiem

Post autor: fanch » 23 cze 2010, o 09:24

mam takie pytanko, mianowicie jak policzyć taką oto całkę :

\(\displaystyle{ \int_{}^{} \sqrt{1+4x ^{2} }dx}\)

Kartezjusz
Użytkownik
Użytkownik
Posty: 7294
Rejestracja: 14 lut 2008, o 08:31
Płeć: Mężczyzna
Lokalizacja: Z Bielskia-Białej
Podziękował: 5 razy
Pomógł: 947 razy

całka z pierwiastkiem

Post autor: Kartezjusz » 23 cze 2010, o 09:57

Wskazówka :\(\displaystyle{ t^{2}=4x^{2}+1}\)
Wyznacz x i dx. Otrzymasz całkę do arcsin.

Awatar użytkownika
fanch
Użytkownik
Użytkownik
Posty: 524
Rejestracja: 14 paź 2006, o 16:56
Płeć: Mężczyzna
Lokalizacja: z Polski
Podziękował: 36 razy
Pomógł: 82 razy

całka z pierwiastkiem

Post autor: fanch » 23 cze 2010, o 10:07

dzięki.

Awatar użytkownika
meninio
Użytkownik
Użytkownik
Posty: 1876
Rejestracja: 3 maja 2008, o 11:09
Płeć: Mężczyzna
Lokalizacja: Jastrzębie Zdrój
Podziękował: 5 razy
Pomógł: 467 razy

całka z pierwiastkiem

Post autor: meninio » 23 cze 2010, o 10:22

Powyższe podstawienie nic nie daje.
Jak już podstawienie to takie \(\displaystyle{ x=\frac{1}{2}\sinh t}\).

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

całka z pierwiastkiem

Post autor: cosinus90 » 23 cze 2010, o 11:10

Zgadzam się z meninio, wtedy po podstawieniu korzystamy ze wzoru \(\displaystyle{ 1+ \sinh ^{2} \alpha = \cosh ^{2} \alpha}\) , upraszczamy i po wyliczeniu całki powracamy do zmiennej x za pomocą funkcji odwrotnej area.

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

całka z pierwiastkiem

Post autor: mariuszm » 23 cze 2010, o 13:58

Pierwsze podstawienie Eulera też będzie dobre

\(\displaystyle{ \sqrt{1+4x^2}=t-2x}\)


Można też wstępnie przez części i dopiero pierwsze podstawienie Eulera

\(\displaystyle{ \int{ \sqrt{1+4x^2} \mbox{d}x }}\)

\(\displaystyle{ \sqrt{1+4x^2}=t-2x}\)

\(\displaystyle{ 1=t^2-4xt}\)

\(\displaystyle{ t^2-1=4xt}\)

\(\displaystyle{ x=\frac{t^2-1}{4t}}\)

\(\displaystyle{ \sqrt{1+4x^2}=t-2x=t- \frac{t^2-1}{2t}= \frac{t^2+1}{2t}}\)

\(\displaystyle{ \mbox{d}x = \frac{8t^2-4t^2+4}{16t^2} \mbox{d}t}\)

\(\displaystyle{ \mbox{d}x = \frac{t^2+1}{4t^2} \mbox{d}t}\)

\(\displaystyle{ \int{ \frac{ \left(t^2+1 \right)^2 }{8t^3} \mbox{d}t}}\)

\(\displaystyle{ = \frac{1}{8} \int{ \frac{ t^4+2t^2+1 }{t^3} \mbox{d}t}}\)

\(\displaystyle{ =\frac{1}{8} \int{ t+ \frac{2}{t}+ \frac{1}{t^3} \mbox{d}t}}\)

\(\displaystyle{ =\frac{1}{8} \left( \frac{t^2}{2}+2\ln{ \left|t \right|- \frac{1}{2t^2} } \right)+C}\)

\(\displaystyle{ =\frac{1}{16} \left( t^2+4\ln{ \left|t \right|- \frac{1}{t^2} } \right)+C}\)

\(\displaystyle{ = \frac{1}{4} \left(2x \sqrt{1+4x^2}+\ln{ \left|2x+ \sqrt{1+4x^2} \right| } \right)+C}\)

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

całka z pierwiastkiem

Post autor: cosinus90 » 23 cze 2010, o 20:00

Oczywiście, ale po to znamy inne metody żeby sobie upraszczać sprawę a nie komplikować, bo podstawienie Eulera co prawda jest uniwersalne, ale bardzo czasochłonne dlatego też dalej obstaję przy podstawieniu hiperbolicznym.

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

całka z pierwiastkiem

Post autor: mariuszm » 23 cze 2010, o 21:25

cosinus90, tak ale funkcje hiperboliczne nie są wprowadzane
np w szkole średniej

Tutaj można też zastosować podstawienie \(\displaystyle{ 2x=\tan{t}}\)

Jak już stosować podstawienia hiperboliczne to czy nie lepiej przedstawić je
za pomocą funkcji wykładniczej

Tutaj podstawienie \(\displaystyle{ 4x=e^{t}-e^{-t}}\)

Ja uważam że jeśli już stosować podstawienie hiperboliczne to najlepiej
przedstawić je za pomocą funkcji wykładniczej ponieważ funkcję wykładniczą wszyscy
znają a funkcje hiperboliczne już nie
Ostatnio zmieniony 23 cze 2010, o 21:32 przez mariuszm, łącznie zmieniany 1 raz.

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

całka z pierwiastkiem

Post autor: cosinus90 » 23 cze 2010, o 21:27

mariuszm, to niepoważny argument - a całki to się wprowadza w szkole średniej? Skoro rozmawiamy nt. podstaw matematyki wyższej to używam wiedzy i pojęć z tego zakresu.
I już nie mieszajmy koledze bo się zaraz totalnie zagubi

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

całka z pierwiastkiem

Post autor: mariuszm » 23 cze 2010, o 22:52

No dobra scałkuje to teraz podstawieniem hiperbolicznym ale
specjalnie przedstawię je za pomocą funkcji wykładniczych

\(\displaystyle{ \int{ \sqrt{1+4x^2} \mbox{d}x }}\)

\(\displaystyle{ 2x= \frac{1}{2} \left(e^{t}-e^{-t} \right)}\)

\(\displaystyle{ 2 \mbox{d}x = \frac{1}{2} \left(e^{t}+e^{-t} \right) \mbox{d}t}\)

\(\displaystyle{ \frac{1}{8} \int{ \sqrt{ \frac{4+ \left(e^t-e^{-t} \right) ^2}{4} } \cdot \left(e^t+e^{-t} \right) \mbox{d}t}}\)

\(\displaystyle{ = \frac{1}{8} \int{ \left(e^{t}+e^{-t} \right)^2 \mbox{d}t}}\)

\(\displaystyle{ = \frac{1}{8} \int{ e^{2t}+2+e^{-2t} \mbox{d}t}}\)

\(\displaystyle{ = \frac{1}{8} \int{ \frac{1}{2} e^{2t}+2t- \frac{1}{2} e^{-2t} \mbox{d}t}}\)

\(\displaystyle{ = \frac{1}{16} \left(e^{2t}-e^{-2t}+4t \right)+C}\)

\(\displaystyle{ = \frac{1}{16} \left( \left(e^{t}-e^{-t} \right) \left(e^{t}+e^{-t} \right) +4t \right)+C}\)

\(\displaystyle{ e^{t}-e^{-t}=4x}\)

\(\displaystyle{ e^{t}+e^{-t}=2 \sqrt{1+4x^2}}\)

\(\displaystyle{ 2e^{t}=4x+2 \sqrt{1+4x^2}}\)

\(\displaystyle{ e^{t}=2x+\sqrt{1+4x^2}}\)

\(\displaystyle{ t=\ln{ \left|2x+\sqrt{1+4x^2} \right| }}\)

\(\displaystyle{ = \frac{1}{16} \left( 8x \sqrt{1+4x^2} +4\ln{ \left|2x+\sqrt{1+4x^2} \right| } \right)+C}\)

\(\displaystyle{ = \frac{1}{4} \left( 2x \sqrt{1+4x^2}+\ln{ \left|2x+\sqrt{1+4x^2} \right| } \right)+C}\)


No i teraz pytanie czy podstawienie Eulera na pewno jest bardziej skomplikowane ?

bedbet
Użytkownik
Użytkownik
Posty: 2484
Rejestracja: 15 mar 2008, o 22:03
Płeć: Mężczyzna
Lokalizacja: Lublin
Pomógł: 248 razy

całka z pierwiastkiem

Post autor: bedbet » 23 cze 2010, o 23:51

To zależy co dla kogo jest bardziej skomplikowane. Możesz równie dobrze rozwiązać metodą całek stowarzyszonych. Myśleć wtedy za wiele nie trzeba, ale jest trochę liczenia.

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

całka z pierwiastkiem

Post autor: cosinus90 » 24 cze 2010, o 16:31

\(\displaystyle{ I = \int{ \sqrt{1+4x^2} \mbox{d}x }}\)
\(\displaystyle{ 2x = \sinh t \Leftrightarrow \dd x = \frac{1}{2} \cosh t \dd t}\)
Zatem:
\(\displaystyle{ I = \int \sqrt{1+ \sinh ^{2}t } \cdot \frac{1}{2} \cosh t \dd t = \frac{1}{2} \int \cosh^2 t = \frac{1}{2} \int \frac{1}{2}(1+\cosh 2t) \dd t = \frac{1}{4} \left( t + \frac{1}{2}\sinh 2t \right) + C = \frac{1}{4} \left[ \arsinh \left( 2x \right) + \frac{1}{2} \left( 4x + \sqrt{1+ 4 x^{2} } \right) \right] + C}\)

Wydaje mi się, że mój sposób jednak jest mniej skomplikowany;)
Ostatnio zmieniony 19 kwie 2013, o 22:08 przez Dasio11, łącznie zmieniany 1 raz.
Powód: Poprawa zapisu funkcji.

Awatar użytkownika
meninio
Użytkownik
Użytkownik
Posty: 1876
Rejestracja: 3 maja 2008, o 11:09
Płeć: Mężczyzna
Lokalizacja: Jastrzębie Zdrój
Podziękował: 5 razy
Pomógł: 467 razy

całka z pierwiastkiem

Post autor: meninio » 24 cze 2010, o 18:25

Tylko czekałem kiedy użytkownik mariuszm wrzuci swoje dwa grosze do tego postu....
Dlatego na tę okoliczność przygotowałem specjalny wiersz:
Mariuszm na forum najlepiej wie
jak całki liczy się.......

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

całka z pierwiastkiem

Post autor: cosinus90 » 24 cze 2010, o 18:33

Hehehe widzę, że nie tylko tutaj próbuje przeforsować łopatologiczne sposoby jako najlepsze?

Awatar użytkownika
meninio
Użytkownik
Użytkownik
Posty: 1876
Rejestracja: 3 maja 2008, o 11:09
Płeć: Mężczyzna
Lokalizacja: Jastrzębie Zdrój
Podziękował: 5 razy
Pomógł: 467 razy

całka z pierwiastkiem

Post autor: meninio » 24 cze 2010, o 18:44

Dokładnie.
Jego posty prześladują mnie już od dawien dawna.

ODPOWIEDZ