Układ równań - eliminacja jordana-gaussa

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
Feliks1990
Użytkownik
Użytkownik
Posty: 68
Rejestracja: 14 sty 2009, o 13:37
Podziękował: 8 razy

Układ równań - eliminacja jordana-gaussa

Post autor: Feliks1990 » 20 cze 2010, o 14:47

Witam, mam taki oto układ równań:
\(\displaystyle{ \begin{cases}x_{1}+x_{2}=1\\x_{2}+x_{3}=1\\x_{3}+x_{4}=1 \end{cases}}\)
I mamy zbadać jego rozwiązalność i podać rozwiązania, jeśli istnieją. Układ nie jest trudny, moje pytanie jest jednak inne. Chciałem zrobić macierz uzupełnioną i zrobić to metodą eliminacji jordana-gaussa. zapomniałem jednak co się robi,gdy trzeba wprowadzić jeden parametr? kiedyś wyczytałem to w książce witczyńskich z algebry, jednak teraz nie mam tego skryptu pod ręką,a muszę to sobie przypomnieć do jutra. Proszę o pomoc.
pozdrawiam,

BettyBoo
Użytkownik
Użytkownik
Posty: 5356
Rejestracja: 10 kwie 2009, o 10:22
Płeć: Kobieta
Lokalizacja: Gliwice
Pomógł: 1380 razy

Układ równań - eliminacja jordana-gaussa

Post autor: BettyBoo » 20 cze 2010, o 21:19

Ideą metody Gaussa-Jordana jest doprowadzenie macierzy układu do postaci normalnej. Z tego odczytuje się rozwiązanie. Nie bardzo więc rozumiem co masz na myśli z wprowadzaniem parametru - pytasz o końcową postać rozwiązania czy o co?

Pozdrawiam.

Feliks1990
Użytkownik
Użytkownik
Posty: 68
Rejestracja: 14 sty 2009, o 13:37
Podziękował: 8 razy

Układ równań - eliminacja jordana-gaussa

Post autor: Feliks1990 » 20 cze 2010, o 22:27

Chodzi mi o moment, w którym brakuje jednego wiersza do tego, aby macierz była kwadratowa. wiem już że należy go dopisać, a jako jego wartość w kolumnie wyrazów wolnych wpisać parametr, udało mi się dorwać skrypt:)
pozdrawiam.

BettyBoo
Użytkownik
Użytkownik
Posty: 5356
Rejestracja: 10 kwie 2009, o 10:22
Płeć: Kobieta
Lokalizacja: Gliwice
Pomógł: 1380 razy

Układ równań - eliminacja jordana-gaussa

Post autor: BettyBoo » 20 cze 2010, o 22:32

Nic nie wiem o tym, żeby jakiś wiersz się dopisywało...poza tym macierz wcale nie musi być kwadratowa, żeby to rozwiązywać metodą G-J...ale nic to, skoro wiesz o co chodzi, to super, bo ja pojęcia nie mam

Pozdrawiam.

Feliks1990
Użytkownik
Użytkownik
Posty: 68
Rejestracja: 14 sty 2009, o 13:37
Podziękował: 8 razy

Układ równań - eliminacja jordana-gaussa

Post autor: Feliks1990 » 20 cze 2010, o 22:43

hehe, tak jak np. dla tej macierzy, są 3 równania i 4niewiadome,więc rozwiązanie jest zależne od parametru. może jeśli Ci się chce rozwiązać, to powiedz ile Tobie wychodzi? bo mi:
\(\displaystyle{ \begin{cases}x_{1}=1-t\\x_{2}=t\\x_{3}=1-t\\x_{4}=t \end{cases}}\)
pozdrawiam:)

BettyBoo
Użytkownik
Użytkownik
Posty: 5356
Rejestracja: 10 kwie 2009, o 10:22
Płeć: Kobieta
Lokalizacja: Gliwice
Pomógł: 1380 razy

Układ równań - eliminacja jordana-gaussa

Post autor: BettyBoo » 20 cze 2010, o 22:46

No to jedna z możliwych postaci odpowiedzi. Oczywiście trzeba dopisać, że \(\displaystyle{ t\in R}\) (lub \(\displaystyle{ t\in C}\), zależy jaki układ rozwiązujesz).

Pozdrawiam.

ODPOWIEDZ