Równanie liniowe pierwszego rzędu

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
kamoreks
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 24 sty 2008, o 22:02
Płeć: Mężczyzna
Lokalizacja: Stąd
Podziękował: 3 razy

Równanie liniowe pierwszego rzędu

Post autor: kamoreks » 18 cze 2010, o 19:47

\(\displaystyle{ y ^{'}-y=cos2x+2sin2x}\)

Mi wychodzi \(\displaystyle{ Ce ^{x}+ \frac{3}{2}sin2x+ \frac{1}{2}cos2x}\)

A w żółtej: \(\displaystyle{ Ce ^{x} -cos2x}\)

sushi
Użytkownik
Użytkownik
Posty: 3424
Rejestracja: 30 sie 2006, o 14:36
Płeć: Mężczyzna
Lokalizacja: Szczecin
Podziękował: 2 razy
Pomógł: 476 razy

Równanie liniowe pierwszego rzędu

Post autor: sushi » 18 cze 2010, o 20:22

to policz pochodna swojej funkcji i podstaw do rownania rozniczkowego, jak bedzie pasowac to znaczy ze jest OK, jak nie to znaczy ze rozwiazanie z ksiazki jest OK

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

Równanie liniowe pierwszego rzędu

Post autor: cosinus90 » 19 cze 2010, o 01:16

Całka ogólna równania liniowego jednorodnego:
\(\displaystyle{ y=Ce^{x}}\) - to raczej oczywiste, więc tłumaczenia są zbędne.

Całka szczególna równania liniowego niejednorodnego:
Z metody przewidywań
\(\displaystyle{ y_{p} = Asin2x + Bcos2x}\)
\(\displaystyle{ y' _{p} = 2Acos2x - 2Bsin2x}\)

Stąd
\(\displaystyle{ 2Acos2x - 2Bsin2x - Asin2x - Bcos2x = cos2x + 2sin2x}\)

Z równości wielomianów trygonometrycznych
\(\displaystyle{ \begin{cases} 2A-B = 1 \\ -A-2B = 2 \end{cases}}\)
Czyli \(\displaystyle{ A= 0}\) oraz \(\displaystyle{ B = -1}\)
Ostatecznie całka ogólna równania liniowego niejednorodnego
\(\displaystyle{ y = Ce^{x} - cos2x}\)

W takim razie wnioskuję, że pewnie gdzieś prosty błąd w układzie równań popełniłeś

kamoreks
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 24 sty 2008, o 22:02
Płeć: Mężczyzna
Lokalizacja: Stąd
Podziękował: 3 razy

Równanie liniowe pierwszego rzędu

Post autor: kamoreks » 19 cze 2010, o 09:05

A jeżeli równanie szczególne zamienimy, że pierwszy będzie \(\displaystyle{ Acos2x+Asin2x}\) to też będzie ok ?

Awatar użytkownika
cosinus90
Korepetytor
Korepetytor
Posty: 5030
Rejestracja: 18 cze 2010, o 18:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy
Pomógł: 777 razy

Równanie liniowe pierwszego rzędu

Post autor: cosinus90 » 19 cze 2010, o 11:09

Rozumiem, że myślisz o zapisie \(\displaystyle{ Acosx + Bsin2x}\) , bo napisałeś 2 razy A
Oczywiście, współczynniki wielomianu trygonometrycznego zawsze muszą wyjść te same, niezależnie od oznaczeń

ODPOWIEDZ