Uzasadnij dodatniość rozwiązania

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
Awatar użytkownika
acmilan
Użytkownik
Użytkownik
Posty: 402
Rejestracja: 27 kwie 2009, o 15:29
Płeć: Mężczyzna
Lokalizacja: Warszawa-Praga
Podziękował: 40 razy
Pomógł: 50 razy

Uzasadnij dodatniość rozwiązania

Post autor: acmilan » 18 cze 2010, o 19:45

\(\displaystyle{ x'=x-xy}\)
\(\displaystyle{ y'=y-xy}\)
\(\displaystyle{ x(0)>0}\), \(\displaystyle{ y(0)>0}\),
przy czym \(\displaystyle{ x}\) i \(\displaystyle{ y}\) są funkcjami zmiennej \(\displaystyle{ t}\), a więc \(\displaystyle{ x'=\frac{dx}{dt}}\), \(\displaystyle{ y'=\frac{dy}{dt}}\)

Czy da się uzasadnić, że \(\displaystyle{ x(t)>0}\), \(\displaystyle{ y(t)>0}\) dla \(\displaystyle{ t>0}\)?

Pozdrawiam

Kartezjusz
Użytkownik
Użytkownik
Posty: 7294
Rejestracja: 14 lut 2008, o 08:31
Płeć: Mężczyzna
Lokalizacja: Z Bielskia-Białej
Podziękował: 5 razy
Pomógł: 947 razy

Uzasadnij dodatniość rozwiązania

Post autor: Kartezjusz » 22 cze 2010, o 14:19

x'=x-xy
y'=y-xy
Odejmijmy stronami równania:
x'-y'=x-y
Czyli
\(\displaystyle{ e^{t}+C=x-y}\)
Czyli
x=s(t)
y=\(\displaystyle{ s(t)+e^{t}+C}\)
s(0)+1+C>0,bo rozwiązania muszą być dodatnie w zerze
Wstawmy postaci równania do zadania:
\(\displaystyle{ s'(t)=s(t)-s^{2}(t)+s(t)(e^{t}+c)}\)
\(\displaystyle{ s'(t)=s(t)-C-s^{2}(t)+s(t)(e^{t}+C)}\)
Bo mogłem odjąć obustronnie exp(t). odejmujemy obustronnie równania i mamy
C=0.Czyli jeśli s(t)>0 to tezę mamy spełnioną,ale gwarancji nie mamy.

Awatar użytkownika
acmilan
Użytkownik
Użytkownik
Posty: 402
Rejestracja: 27 kwie 2009, o 15:29
Płeć: Mężczyzna
Lokalizacja: Warszawa-Praga
Podziękował: 40 razy
Pomógł: 50 razy

Uzasadnij dodatniość rozwiązania

Post autor: acmilan » 22 cze 2010, o 18:05

Gdzie tu dowód? Przecież \(\displaystyle{ s(t)=x}\), a więc nie udowodniłeś dodatniości rozwiązania.

Kartezjusz
Użytkownik
Użytkownik
Posty: 7294
Rejestracja: 14 lut 2008, o 08:31
Płeć: Mężczyzna
Lokalizacja: Z Bielskia-Białej
Podziękował: 5 razy
Pomógł: 947 razy

Uzasadnij dodatniość rozwiązania

Post autor: Kartezjusz » 22 cze 2010, o 18:18

Nie mówię,że udowodniłem. Pytanie brzmi : "udowodnij",czy " sprawdź czy da się udowodnić?"

Awatar użytkownika
acmilan
Użytkownik
Użytkownik
Posty: 402
Rejestracja: 27 kwie 2009, o 15:29
Płeć: Mężczyzna
Lokalizacja: Warszawa-Praga
Podziękował: 40 razy
Pomógł: 50 razy

Uzasadnij dodatniość rozwiązania

Post autor: acmilan » 23 cze 2010, o 16:26

Pytanie brzmi: "Udowodnij, jeśli jest to prawdą".

ODPOWIEDZ