całka z e

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
orwe
Użytkownik
Użytkownik
Posty: 57
Rejestracja: 30 maja 2009, o 22:32
Płeć: Mężczyzna
Podziękował: 3 razy
Pomógł: 1 raz

całka z e

Post autor: orwe » 10 cze 2010, o 18:39

czy może ktoś mi napisać jak zabrać się za obliczanie \(\displaystyle{ \int_{0}^{+ \infty } e^{-x^{2}}}\) wiem że wynik tego to \(\displaystyle{ 1/2 \sqrt{ \pi }}\). Opcjonalnie jak formalnie policzyć gammę_Eulera(1/2) bo ja podstawiałem \(\displaystyle{ |t^{1/2} = x |}\) ale utknąłem na powyższej całce. Z góry thx

Gość Specjalny
Gość Specjalny
Posty: 9834
Rejestracja: 18 gru 2007, o 03:54
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 90 razy
Pomógł: 2629 razy

całka z e

Post autor: » 11 cze 2010, o 00:33

Mamy:
\(\displaystyle{ \left( \int_{0}^{\infty} e^{-x^2} \mbox{d}x \right)^2 =
\left( \int_{0}^{\infty} e^{-x^2} \mbox{d}x \right) \cdot \left( \int_{0}^{\infty} e^{-y^2} \mbox{d}y \right) = \int_{0}^{\infty}\int_{0}^{\infty} e^{-(x^2+y^2)} \mbox{d}x \mbox{d}y}\)


Zamiana na współrzędne biegunowe:
\(\displaystyle{ x= r\cos \phi \\
y= r\sin \phi \\
0 \leq r \leq +\infty \\
0 \leq \phi \leq \frac{\pi}{2} \\
|J|=r}\)


W nowych zmiennych mamy:

\(\displaystyle{ \dots = \int_{0}^{\frac{\pi}{2}}\int_{0}^{\infty} re^{-r^2} \mbox{d}r \mbox{d}\phi =
\frac{\pi}{2} \cdot \frac{1}{2}e^{-r^2}|_{0}^{\infty}=\frac{\pi}{4}}\)


czyli wyjściowa całka jest równa \(\displaystyle{ \frac{\sqrt{\pi}}{2}}\).

Q.

orwe
Użytkownik
Użytkownik
Posty: 57
Rejestracja: 30 maja 2009, o 22:32
Płeć: Mężczyzna
Podziękował: 3 razy
Pomógł: 1 raz

całka z e

Post autor: orwe » 11 cze 2010, o 18:48

Dobre dzięki

ODPOWIEDZ