Kilka równań różniczkowych
: 2 mar 2010, o 22:15
Witam. Mam problem z kilkoma równaniami różniczkowymi. Z góry dziękuję bardzo za pomoc.
1.
\(\displaystyle{ y'=10 ^{x+y}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \int \frac{dy}{10^y} = \int 10^{x} dx}\)
\(\displaystyle{ \int 10^{x} dx= \frac{10^{x}}{ln10}+C}\)
\(\displaystyle{ \int \frac{dy}{10^y} = \int 10^{-y}= \frac{10^{-y}}{ln10} +C \ (?)}\)
2.
\(\displaystyle{ y'= \sqrt{4x+2y-1}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \frac{1}{2} \int \frac{du}{ \sqrt{u} +2}= \int dx}\)
\(\displaystyle{ \sqrt{u} +2-2ln \left|\sqrt{u} +2 \right| =x+C}\)
Jak z takiego równania wyznaczyć u?
3.
\(\displaystyle{ xy'-y=xtg \frac{y}{x}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \int \frac{du}{tgu} = \int \frac{dx}{x}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ ln(tgu)- \frac{1}{2} ln((tgu) ^{2} +1)=lnx \ (?)}\)
1.
\(\displaystyle{ y'=10 ^{x+y}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \int \frac{dy}{10^y} = \int 10^{x} dx}\)
\(\displaystyle{ \int 10^{x} dx= \frac{10^{x}}{ln10}+C}\)
\(\displaystyle{ \int \frac{dy}{10^y} = \int 10^{-y}= \frac{10^{-y}}{ln10} +C \ (?)}\)
2.
\(\displaystyle{ y'= \sqrt{4x+2y-1}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \frac{1}{2} \int \frac{du}{ \sqrt{u} +2}= \int dx}\)
\(\displaystyle{ \sqrt{u} +2-2ln \left|\sqrt{u} +2 \right| =x+C}\)
Jak z takiego równania wyznaczyć u?
3.
\(\displaystyle{ xy'-y=xtg \frac{y}{x}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ \int \frac{du}{tgu} = \int \frac{dx}{x}}\)
\(\displaystyle{ (...)}\)
\(\displaystyle{ ln(tgu)- \frac{1}{2} ln((tgu) ^{2} +1)=lnx \ (?)}\)