rozwiązać równanie różniczkowe

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
Anonim18
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 10 gru 2008, o 22:10
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 1 raz

rozwiązać równanie różniczkowe

Post autor: Anonim18 » 14 lut 2010, o 22:50

obliczyć równanie różniczkowe \(\displaystyle{ y' + 2xy =2xe^{-x^2} \\ y(0)= 2}\) \(\displaystyle{ y(0)= 2}\) wstawiam jako co? bardzo dziękuję za pomoc

Awatar użytkownika
M Ciesielski
Gość Specjalny
Gość Specjalny
Posty: 2524
Rejestracja: 21 gru 2005, o 15:43
Płeć: Mężczyzna
Lokalizacja: Bytom
Podziękował: 44 razy
Pomógł: 302 razy

rozwiązać równanie różniczkowe

Post autor: M Ciesielski » 14 lut 2010, o 22:55

Tego warunku używasz na końcu, żeby wyznaczyć stałą C. Na początku rozwiąż to równanie.

Anonim18
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 10 gru 2008, o 22:10
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 1 raz

rozwiązać równanie różniczkowe

Post autor: Anonim18 » 15 lut 2010, o 11:54

\(\displaystyle{ y' + 2xy = 0 \\ \frac{dy}{dx} = -2xy \\ \frac{dy}{y} = -2xdx \\ \int \frac{dy}{y} = -2 \int xdx \\ \ln |y| = - x^2 + C \\ |y|= e^{-x^2+C} \\ y= e^C \cdot e^{-x^2}}\) no i do tego momentu czaje, a zaś nie wiem co jeszcze trzeba zrobić. Rozumiem ze wyszła mi całka ogólna równania jednorodnego?
Ostatnio zmieniony 15 lut 2010, o 12:50 przez Szemek, łącznie zmieniany 1 raz.
Powód: Nieczytelny zapis - brak LaTeX-a. Proszę zapoznać się z instrukcją: http://matematyka.pl/latex.htm .

pingu
Użytkownik
Użytkownik
Posty: 298
Rejestracja: 7 gru 2009, o 12:32
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 1 raz
Pomógł: 54 razy

rozwiązać równanie różniczkowe

Post autor: pingu » 15 lut 2010, o 13:01

[latex]y= e^C \cdot e^{-x^2}[/latex]
oznacz:
[latex]C=e^C[/latex]
a następnie używając metody uzmienniania stałej
C=C(x)

[latex]y=C(x) \cdot e^{-x^2}[/latex]

teraz y'(x) i y(x) podstaw do twojego równania i wyznacz całkę szczególną (r. niejednorodnego). Znowu wyjdzie jakaś stała C i tu dla jej wyznaczenia użyj warunku [latex]y(0)= 2[/latex].

Pozdrawiam
pingu

Awatar użytkownika
M Ciesielski
Gość Specjalny
Gość Specjalny
Posty: 2524
Rejestracja: 21 gru 2005, o 15:43
Płeć: Mężczyzna
Lokalizacja: Bytom
Podziękował: 44 razy
Pomógł: 302 razy

rozwiązać równanie różniczkowe

Post autor: M Ciesielski » 15 lut 2010, o 13:03

Nie siedzę za bardzo w równaniach różniczkowych, raczkuje to u mnie, ale ja bym to robił tak: \(\displaystyle{ y' + 2xy = 2xe^{-x^2} \\ \frac{\mbox{d}y}{\mbox{d}x} = -2xy \\ \frac{\mbox{d}y}{y} = -2x\mbox{d}x \\ \ln |y| = -x^2 + C \\ y = e^{-x^2 + C} = e^C \cdot e^{-x^2} \\ e^C \mbox{ jest stala, nazwijmy ja D} \\ y = De^{-x^2} \\ D = D(x) \\ y' = D'(x)e^{-x^2} - 2xD(x)e^{-x^2} \\ D'(x)e^{-x^2} - 2xD(x)e^{-x^2} + 2xD(x)e^{-x^2} = 2xe^{-x^2} \\ D'(x) = 2x \\ D(x) = x^2 + F \mbox{ F - stala} \\ y = (x^2+F)e^{-x^2} \\ y = x^2e^{-x^2} + Fe^{-x^2} \\ y(0) = 2 \\ 2 = 0 + F \cdot 1 \\ F = 2 \\ y = (x^2+2)e^{-x^2}}\) Myślę, że tak, proszę o sprawdzenie.

Anonim18
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 10 gru 2008, o 22:10
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 1 raz

rozwiązać równanie różniczkowe

Post autor: Anonim18 » 15 lut 2010, o 13:43

Dobrze Ci wyszło:) bo miałem tego wynik. Aby mam małe takie pytanko do tego. Nie bardzo czaje tego momentu gdzie jest rownanie niejednorodne. Jesli wyszlo mi rownanie jednorodne \(\displaystyle{ y= e^c\cdot e^{-x^2}}\), to w dalszym etapie przyjmuje jakas zmienna za to moje \(\displaystyle{ e^c}\), i robię z całości tego równania pochodną? nie ma tu jakiś wielce wzorów na to? i powiedz mi w tym momencie: \(\displaystyle{ D'(x)e^{-x^2} - 2xD(x)e^{-x^2} +2xD(x)e^{-x^2}= 2xe^{-x^2}}\) nie wiem właśnie skąd się to wzięło \(\displaystyle{ +2xD(x)e^{-x^2}}\)?? tamto to wiadomo ze wzoru na iloczyn pochodnych a to? będę bardzo wdzięczny za wytłumaczenie. Dziękuję i pozdrawiam
Ostatnio zmieniony 15 lut 2010, o 13:48 przez lukasz1804, łącznie zmieniany 1 raz.
Powód: Cały kod LaTeX-a umieszczaj między tagami [latex] i [/latex].

Awatar użytkownika
M Ciesielski
Gość Specjalny
Gość Specjalny
Posty: 2524
Rejestracja: 21 gru 2005, o 15:43
Płeć: Mężczyzna
Lokalizacja: Bytom
Podziękował: 44 razy
Pomógł: 302 razy

rozwiązać równanie różniczkowe

Post autor: M Ciesielski » 15 lut 2010, o 14:04

Podstawienie wszystkiego do początkowego równania.

pingu
Użytkownik
Użytkownik
Posty: 298
Rejestracja: 7 gru 2009, o 12:32
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 1 raz
Pomógł: 54 razy

rozwiązać równanie różniczkowe

Post autor: pingu » 15 lut 2010, o 14:06

spójrz na równanie do rozwiązania, tam masz składnik: \(\displaystyle{ 2xy=2xD(x)e^{-x^2}}\) już OKI pozdrawiam

ODPOWIEDZ