Strona 1 z 1
Ciag i szereg
: 16 sty 2010, o 17:33
autor: mol_ksiazkowy
Ciag \(\displaystyle{ t_n}\) jest okreslony tak:
\(\displaystyle{ t_1=3 ,\ t_2=\frac{9}{2}, \ t_{n+2}=\frac{5}{2}t_{n+1} -t_n}\)
Wykazać, że \(\displaystyle{ s= \sum_{n=1}^{\infty} \arcctg t_n}\)
istnieje i obliczyć s
Re: Ciag i szereg
: 30 paź 2025, o 14:58
autor: Trol-24-11-2025
Najpierw znajdziemy wzór ogólny jawny ciągu, nie będę tym zanudzał szeregami funkcyjnymi , on wynosi:
\(\displaystyle{ t_{n}=2^n+2^{1-n}}\)
mamy obliczyć:
\(\displaystyle{ s= \sum_{n=1}^{ \infty } \arcctg(2^n+2^{1-n})}\)
(*) \(\displaystyle{ \arcctg(2^n+2^{1-n})=\arctg \frac{1}{2^n+2^{1-n}}=\arctg \frac{2^{n-1}}{2^n \cdot 2^{n-1}+1}=\arctg \frac{2^n-2^{n-1}}{2^n \cdot 2^{n-1}+1}=\arctg 2^n-\arctg 2^{n-1} }\)
suma ta będzie zbieżna ponieważ:
\(\displaystyle{ 0< \sum_{n=1}^{ \infty } \arctg \frac{1}{2^n+2^{n-1}} < \sum_{n=1}^{ \infty }\arctg \frac{1}{2^n}}\)
a ten ostatni jest zbieżny można się łatwo pobawić...
obłóżmy suma ten ostatni i otrzymamy:
\(\displaystyle{ \sum_{n-1}^{ \infty } \left( \arctg 2^n-\arctg 2^{n-1}\right) = \left| \sum_{n-1}^{ \infty } \left( \arctg 2^n-\arctg 2^{n-1}\right) \right|= }\)
ponieważ suma jest dodatnia
\(\displaystyle{ =\left| \arctg 2-\arctg 1+\arctg 2^2-\arctg 2+...\right| }\)
wszystko się balansuje (skraca) a więc=
\(\displaystyle{ \left| -\arctg 1\right| = \frac{\pi}{4} }\)
\(\displaystyle{ s=\frac{\pi}{4}}\)...