Strona 1 z 1

pochodna f(x)^g(x)

: 21 paź 2004, o 21:24
autor: Zielony
pomóżcie mi wyliczyć:

( f(x) ^ g(x) )' = ?

pochodna f(x)^g(x)

: 21 paź 2004, o 21:49
autor: Ptolemeusz
a chcesz jakiśkonkretny przykład czy tak ogólnie jeśli ogólnie to będzie ciężko

pochodna f(x)^g(x)

: 21 paź 2004, o 21:52
autor: dabal
skorzystaj z zaleznosci: e^ln(f(x)^g(x))=f(x)^g(x)
Policz pochodną z tego
Sprowadza się to do policzenia:
[ln(f(x)^g(x))]'=z własności logarytmów =[g(x)ln(f(x))]' dalej to pochodna iloczynu.
Mam nadzieję, że ci to wystarczy.

pochodna f(x)^g(x)

: 22 paź 2004, o 09:56
autor: Zielony
powinno wystarczyć! Dzięki!

pochodna f(x)^g(x)

: 30 paź 2004, o 17:35
autor: jackass
albo tak jakos tak :idea:

[ f(x)^g(x) ]' =
= [ e^( g(x)*ln [f(x)] ) ]*[ g'(x)*ln [f(x)] + g(x)*( [f'(x)]/[f(x)]) ]