Strona 1 z 1

2 zadania: romb i trójkąt prostokątny

: 17 kwie 2006, o 22:16
autor: Szczupak
witam, mam problem z dwoma zadaniami:

1.Bok a rombu i jego przekątne p i q spełniają warunek pq=a � . Wyznacz miarę kąta ostrego rombu

2. Trójkąt prostokątny ma przyprostokątne długości 9 cm i 12 cm. na trójkącie opisano i w trókąt wpiasno okrąg. Oblicz sumę długości średnic tych okręgów.

ad1. domyślam się, że kąt będzie 45 ° , jako że pole tego rombu to połowa pola kwadratu opisanego na jego boku. Ale czy takie rozwiązanie wystarczy? Czy nie da się tego jakoś uzasadnić matematycznie?

ad2. wiem, że większe koło ma średnicę równą przeciwprostokątnej, czyli 15 cm. ale co z mniejszym kołem? jak można obliczyć jego promień?

2 zadania: romb i trójkąt prostokątny

: 17 kwie 2006, o 22:27
autor: Tristan
Zad.1
Sposób 1:
Załóżmy, że\(\displaystyle{ p}\)
\(\displaystyle{ p^2=a^2(2-2 \cos )}\)
\(\displaystyle{ q^2=2a^2 -2a^2 \cos(180^{\circ}- )}\)
\(\displaystyle{ q^2=a^2(2+2 \cos )}\)
Mamy równanie \(\displaystyle{ pq=a^2}\), czyli po podniesiu stronami do kwadratu \(\displaystyle{ (pq)^2=a^4}\). Podstawiając wyliczone p i q otrzymujemy:
\(\displaystyle{ a^4(2- 2 \cos )(2+ 2 \cos )=a^4}\)
\(\displaystyle{ 4- 4 \cos^2 =1}\)
\(\displaystyle{ 4( 1 - \cos^2 )=1}\)
\(\displaystyle{ \sin^2 =\frac{1}{4}}\)
\(\displaystyle{ \sin =\frac{1}{2}}\)
\(\displaystyle{ \alpha=30^{\circ}}\)

Teraz sobie patrzę, że Ty masz 15 lat, więc masz prawo nie znać tw.cosinusów
Sposób 2:
Te same oznaczenia co wczesniej.
Pole rombu możemy przedstawić za pomocą wzorów:
\(\displaystyle{ P=a^2 \sin , P=\frac{1}{2} pq}\)
Porównując otrzymujemy:
\(\displaystyle{ a^2 \sin =\frac{1}{2} pq}\)
\(\displaystyle{ pq=2a^2 \sin }\)
A zarazem wiemy z zadania, że \(\displaystyle{ pq=a^2}\), czyli podstawiając za lewą stronę, otrzymujemy:
\(\displaystyle{ a^2=2a^2 \sin }\)
\(\displaystyle{ 1=2 \sin }\)
\(\displaystyle{ \sin =\frac{1}{2}}\)
\(\displaystyle{ \alpha=30^{\circ}}\)

No to jeszcze zrobię to drugie
Zad.2
Boki tego trójkąta to a=9,b=12, c, gdzie c wyliczymy z tw. Pitagorasa i już mamy, że c=15
Teraz po prostu podstawimy do dwóch ogólnodostępnych wzorów \(\displaystyle{ R=\frac{c}{2} , r=\frac{1}{2}(a+b-c)}\).
Nasza szukana suma to \(\displaystyle{ 2(R+r)=2( \frac{15}{2} +3)=21}\).

2 zadania: romb i trójkąt prostokątny

: 18 kwie 2006, o 11:50
autor: Szczupak
za drugie zadanie dzięki, nie znałem tych wzorów. A co do pierwszego, to nie da się tego jeszcze zrobić w 3 sposób? bo wyszło ci 30 ° , czyli inaczej, niż się domyślałem. I masz rację: jestem w III gim. więc nie znam ani sinusów, ani cosinusów. ale z kolei kąta 30 ° nie da się chyba obliczyć, z tego, co znam :/ zastanowię się jeszcze