prosta i płaszczyzna

Obiekty i przekształcenia geometryczne, opisane za pomocą układu (nie zawsze prostokątnego) współrzędnych.
monikap7
Użytkownik
Użytkownik
Posty: 1196
Rejestracja: 6 lis 2007, o 14:36
Płeć: Kobieta
Lokalizacja: wawa
Podziękował: 112 razy
Pomógł: 1 raz

prosta i płaszczyzna

Post autor: monikap7 » 16 wrz 2009, o 21:28

Dla jakich \(\displaystyle{ \alpha}\) prosta i płaszczyzna są równoległe? prosta: \(\displaystyle{ \frac{x-1}{3}= \frac{y-13}{ \alpha } = \frac{z+29}{1}}\) płaszczyzna: \(\displaystyle{ x- \alpha y+3z+123456789=0}\)

Awatar użytkownika
gott314
Użytkownik
Użytkownik
Posty: 233
Rejestracja: 15 kwie 2009, o 16:48
Płeć: Mężczyzna
Podziękował: 8 razy
Pomógł: 38 razy

prosta i płaszczyzna

Post autor: gott314 » 16 wrz 2009, o 22:27

Wektor równoległy do prostej: \(\displaystyle{ \vec{a}=[3,\alpha,1]}\) Wektor prostopadły do płaszczyzny: \(\displaystyle{ \vec{b}=[1,-\alpha,3]}\) Aby prosta i płaszczyzna były do siebie równoległe, iloczyn skalarny wektorów a i b musi być równy zero. \(\displaystyle{ \vec{a}\circ\vec{b}=0}\) Zatem: \(\displaystyle{ 3-\alpha^2+3=0 \Rightarrow \alpha=\pm\sqrt{6}}\)

monikap7
Użytkownik
Użytkownik
Posty: 1196
Rejestracja: 6 lis 2007, o 14:36
Płeć: Kobieta
Lokalizacja: wawa
Podziękował: 112 razy
Pomógł: 1 raz

prosta i płaszczyzna

Post autor: monikap7 » 16 wrz 2009, o 22:37

tak to własnie robiłam:) dzieki

ODPOWIEDZ