Uzywajac cyfr

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
Auran
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 6 kwie 2009, o 20:43
Płeć: Mężczyzna
Podziękował: 5 razy

Uzywajac cyfr

Post autor: Auran » 16 wrz 2009, o 18:10

Uzywajac cyfr 0,1,2,3,4,5, zapisujemy liczby 4-cyfrowe
I wariant-cyfry moga sie powatarzac II wariant-cyfry nie moga sie powtarzac
Oblicz ile mozemy zapisac
a) liczb 4-cyfrowych
b) liczb większych od 4999
c) takich liczb, ze cyfra tysieczna i dziesiatek jest nieparzysta, a pozostale parzyste
d) liczb podzielnych przez 5

Awatar użytkownika
mathX
Użytkownik
Użytkownik
Posty: 648
Rejestracja: 1 lis 2008, o 15:54
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 5 razy
Pomógł: 116 razy

Uzywajac cyfr

Post autor: mathX » 16 wrz 2009, o 18:38

d)
0 na końcu
permutacja pozostałych liczb: \(\displaystyle{ 5!}\)

5 na końcu
permutacja pozostałych liczb minus permutacja liczb z zerem na początku: \(\displaystyle{ 5!-4!}\)

\(\displaystyle{ \Rightarrow 2 \cdot 5!-4!}\)

mam nadzieję, że jest ok.

rodzyn7773
Użytkownik
Użytkownik
Posty: 1659
Rejestracja: 12 lip 2009, o 10:44
Płeć: Mężczyzna
Lokalizacja: Skierniewice/Rawa Maz.
Podziękował: 8 razy
Pomógł: 277 razy

Uzywajac cyfr

Post autor: rodzyn7773 » 16 wrz 2009, o 18:40

chyba nie za bardzo bo liczby mają być 4-cyfrowe

Awatar użytkownika
qba1337
Użytkownik
Użytkownik
Posty: 304
Rejestracja: 20 lis 2008, o 17:04
Płeć: Mężczyzna
Lokalizacja: xXx
Podziękował: 3 razy
Pomógł: 40 razy

Uzywajac cyfr

Post autor: qba1337 » 16 wrz 2009, o 18:46

a) I wariant cyfry mogą się powtarzać
Na początku nie może być 0 więc rozstawień pierwszej cyfry jest 6
Reszta cyfry to wariacja z powtórzeniami 3 wyrazowa zbioru 5 elementowego
\(\displaystyle{ 5*6^{3} =5*216=....}\)
II wariant nie mogą sie powtarzać

Tutaj wykorzystujesz tylko wariacje bez powtórzeń

\(\displaystyle{ 5* \frac{5!}{2!}=5*3*4*5}\)

d)
II wariant: liczby nie mogą się powtarzać

Jeśli będziemy mieli 0 jako ostatnia cyfra to :

\(\displaystyle{ 5*5*5=125}\)

Jeśli 5 jako ostatnia cyfra to:
\(\displaystyle{ 4*5*5}\)

Dodajemy te 2 przypadki wiec \(\displaystyle{ 125+100=225 liczb}\)

edit: ofc że zbioru 6 elementowego, literówka ;P
Ostatnio zmieniony 16 wrz 2009, o 19:19 przez qba1337, łącznie zmieniany 2 razy.

rodzyn7773
Użytkownik
Użytkownik
Posty: 1659
Rejestracja: 12 lip 2009, o 10:44
Płeć: Mężczyzna
Lokalizacja: Skierniewice/Rawa Maz.
Podziękował: 8 razy
Pomógł: 277 razy

Uzywajac cyfr

Post autor: rodzyn7773 » 16 wrz 2009, o 18:51

I wariant cyfry mogą się powtarzać
a) na pierwszym miejscu nie możesz postawić 0 zaś na pozostałych już możesz każdą z 6 czyli masz:
\(\displaystyle{ 5*6*6*6}\)
b)aby liczba 4-cyfrowa złożona z cyfr 1, 2, 3, 4, 5, 0 była większa od 4999 to na pozycji tysięcy możesz postawić tylko cyfrę 5 a na pozostałych już każdą cyfrę z podanych czyli masz tych liczb:
\(\displaystyle{ 1*6*6*6}\)
c)zatem na pozycjach jedności i setek możesz ustawić cyfry 0, 2, 4, na pozycji tysięcy możesz postawić cyfry 1, 3, 5, na pozycji dziesiątek możesz ustawić cyfry 1, 3, 5 czyli wszystkich takich liczb jest:
\(\displaystyle{ 3*3*3*3}\)
d)na pozycji tysięcy nie może być 0, na pozycji setek i dziesiątek może być każda cyfra a na pozycji jedności może być 0 lub 5 czyli liczb spełniających te warunki jest:
\(\displaystyle{ 5*6*6*2}\)
Ostatnio zmieniony 16 wrz 2009, o 19:05 przez rodzyn7773, łącznie zmieniany 1 raz.

Awatar użytkownika
mathX
Użytkownik
Użytkownik
Posty: 648
Rejestracja: 1 lis 2008, o 15:54
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 5 razy
Pomógł: 116 razy

Uzywajac cyfr

Post autor: mathX » 16 wrz 2009, o 18:54

Racja. Nie doczytałem.

Miałem się zreflektować, ale już mnie uprzedziliście.

rodzyn7773
Użytkownik
Użytkownik
Posty: 1659
Rejestracja: 12 lip 2009, o 10:44
Płeć: Mężczyzna
Lokalizacja: Skierniewice/Rawa Maz.
Podziękował: 8 razy
Pomógł: 277 razy

Uzywajac cyfr

Post autor: rodzyn7773 » 16 wrz 2009, o 18:57

qba1337 w tym podpunkcie a I wariant nie powinno być wariacja z powtórzeniami 3 wyrazowa z 6?

-- 16 wrz 2009, o 19:00 --

II wariant
b) na pozycji tysięcy tylko 5 może być na pozostałych każda z podanych z wyjątkiem już użytych czyli będzie takich liczb:
\(\displaystyle{ 1*5*4*3}\)-- 16 wrz 2009, o 19:10 --no i pozostał jeszcze II wariant podpunkt c:
na pozycji tysięcy możesz ustawić trzy cyfry(1, 3, 5), na pozycji setek też trzy cyfry (2, 4, 0), na pozycji dziesiątek dwie cyfry bo nie może to być cyfra tysięcy, podobnie na pozycji jedności - bo nie może to być cyfra setek czyli jest takich liczb:
\(\displaystyle{ 3*3*2*2}\)

ODPOWIEDZ