Strona 1 z 1

Druga pochodna funkcji

: 3 wrz 2009, o 22:18
autor: siro13
witam, mam pewnien problem ,a raczej pytanie odnosnie drugiej pochodnej pewnej funkcji. funkcja ta wyrazona jest wrozem:

\(\displaystyle{ y=(x ^{2} +2x) ^{6}}\)

pierwsza pochodna wychodzi mi

\(\displaystyle{ y'=12(x+1)(x ^{2}+2x) ^{5}}\)

moze mi ktos sprawdzic czy dobrze ja obliczylem?
i drugie pytanie jest takie "jak policzyc kolejna pochodna?"

z wzoru:
\(\displaystyle{ (f*g)'=f'g+fg'}\) ???

Druga pochodna funkcji

: 3 wrz 2009, o 22:19
autor: Nakahed90
Tak, musisz skorzystać z tego wzoru.

Druga pochodna funkcji

: 3 wrz 2009, o 22:56
autor: siro13
a obliczy mi ktos 2ga pochodna? chce sprawdzic czy mi dobrze wyszlo

Druga pochodna funkcji

: 3 wrz 2009, o 22:58
autor: miodzio1988
To pokaż swoje obliczenia i sprawdzimy to.

Druga pochodna funkcji

: 3 wrz 2009, o 23:00
autor: siro13
wyszlo mi

\(\displaystyle{ y''=(x ^{2}+2x) ^{4}(22x^{2}+44x+10)}\)

Druga pochodna funkcji

: 3 wrz 2009, o 23:03
autor: miodzio1988
\(\displaystyle{ y''=12 (x ^{2}+2x) ^{5} + 5 \cdot 12(x+1) (x ^{2}+2x)^{4} (2x+2)}\)

Czy to jest to samo? Trzeba sprawdzic

Druga pochodna funkcji

: 3 wrz 2009, o 23:12
autor: siro13
nie jest to samo, rozni sie ta "12" przed (x+1)

Druga pochodna funkcji

: 3 wrz 2009, o 23:15
autor: miodzio1988
No 12 to musi być bo 12 masz w pierwszej pochodnej . Oraz \(\displaystyle{ 12(a+b)=12a+12b}\)