Strona 1 z 1

Oblicz długości boków trójkąta

: 8 paź 2004, o 18:48
autor: iwcia100
W trójkącie ABC mamy dane b=40, \(\displaystyle{ \alpha=120^o}\), \(\displaystyle{ \beta=30^o}\). Oblicz długości pozostałych boków tego trójkąta.

Oblicz długości boków trójkąta

: 11 paź 2004, o 18:04
autor: Zlodiej
Można to zrobić nawet bez trygonometrii. Niech:

\(\displaystyle{ \alpha}\) to kąt BAC

\(\displaystyle{ \beta}\) to kąt ABC

b=BC

Widzimy że jest to trójkąt równoramienny, a podstawą jest odcinek BC czyli b. Dzieląc trójkąt na dwie części (z wierzchołka A prowadzimy odcinek łaczący środek BC z A), otrzymujemy 2 trójkąty o kątach 90, 60 i 30 stopni. Korzystając z własności tych trójkątów dalej idzie już łatwo .

Dokładniej:

\(\displaystyle{ \frac{1}{2}b=\frac{1}{2}|AB|\sqrt{3}}\)

\(\displaystyle{ |AB|=\frac{40\sqrt{3}}{3}}\)

Jako, że to trójkąt równoramienny bok AC będzie takiej samej długości co bok AB.