Pochodne cząstkowe pierwszego rzędu
: 18 kwie 2009, o 18:20
Prosiłbym o sprawdzenie czy dobrze rozumuje:
\(\displaystyle{ z=ln(x+ \sqrt{x ^{2} + y^{2} })}\)
\(\displaystyle{ \frac{\partial z}{\partial x} = \frac{1}{x+ \sqrt{x ^{2}+y ^{2} } }*(1+ \sqrt{2x})}\)
\(\displaystyle{ \frac{\partial z}{\partial y} = \frac{1}{x+ \sqrt{x ^{2}+y ^{2} } }*(1+ \sqrt{2y})}\)
-- 18 kwietnia 2009, 18:27 --
\(\displaystyle{ z=ln(sinh \frac{x}{2y}}\)
\(\displaystyle{ \frac{\partial z}{\partial x} = \frac{1}{sinh \frac{x}{2y} }*cosh \frac{x}{2y}* \frac{1}{2y}}\)
\(\displaystyle{ \frac{\partial z}{\partial y} = \frac{1}{sinh \frac{x}{2y} }*cosh \frac{x}{2y}*(- \frac{1}{2}x)}\)
\(\displaystyle{ z=ln(x+ \sqrt{x ^{2} + y^{2} })}\)
\(\displaystyle{ \frac{\partial z}{\partial x} = \frac{1}{x+ \sqrt{x ^{2}+y ^{2} } }*(1+ \sqrt{2x})}\)
\(\displaystyle{ \frac{\partial z}{\partial y} = \frac{1}{x+ \sqrt{x ^{2}+y ^{2} } }*(1+ \sqrt{2y})}\)
-- 18 kwietnia 2009, 18:27 --
\(\displaystyle{ z=ln(sinh \frac{x}{2y}}\)
\(\displaystyle{ \frac{\partial z}{\partial x} = \frac{1}{sinh \frac{x}{2y} }*cosh \frac{x}{2y}* \frac{1}{2y}}\)
\(\displaystyle{ \frac{\partial z}{\partial y} = \frac{1}{sinh \frac{x}{2y} }*cosh \frac{x}{2y}*(- \frac{1}{2}x)}\)