Strona 1 z 1

Trójkąt i czworokąt w układzie współrzędnych

: 5 mar 2009, o 21:20
autor: LG
Mam takie zadanie i nie wiem jak go zrobić. Pomóżcie!
Wyznacz współrzędne wierzchołków trójkąta ABC, mając dane współrzędne środków jego boków:
S1=(-2,1)
S2=(2,3)
S3=(4,-1)

I jeszcze jedno:
Sprawdź czy na czworokącie ABCD o wierzchołkach A=(0,3), B=(7,2), C=(6,-5), D=(-1,2) można opisać okrąg

Powiedzcie jak się do ego zabrać, z jakich twierdzeń skorzystać itd. Please!

Trójkąt i czworokąt w układzie współrzędnych

: 5 mar 2009, o 22:27
autor: Crizz
W pierwszym zadaniu wystarczy ci twierdzenie o środku odcinka: środek odcinka o końcach \(\displaystyle{ (x_{1},y_{1}),(x_{2},y_{2})}\) ma współrzędne \(\displaystyle{ \left( \frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2} \right)}\). Powinieneś dostać dwa proste do rozwiązania układy trzech równań z trzema niewiadomymi.

W zdrugim zadaniu znajdujesz po prostu równanie okręgu przechodzącego przez trzy z danych punktów i sprawdzasz, czy czwarty punkt też spełnia to równanie. Wskazówka: jeśli chcesz znaleźć równanie okręgu przechodzącego przez A,B i C, możesz poszukać środka S okręgu jako punktu przecięcia symetralnych trójkąta ABC (wyznaczasz równania dwóch symetralnych - a wiesz już, jak szukać środka odcinka - i znajdujesz punkt wspólny), potem obliczasz promień okręgu jako odległość SA.

Trójkąt i czworokąt w układzie współrzędnych

: 9 mar 2009, o 21:30
autor: LG
Zrobiłem to prościej, ale dzięki za pomoc.