Strona 1 z 1

Znaleźć równanie płaszczyzny przechodzącej przez punkt...

: 6 lut 2009, o 11:13
autor: dawido000
Znaleźć równanie płaszczyzny przechodzącej przez punkt P(-1,3,1) i równoległej do prostej:
\(\displaystyle{ l:\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{3}}\) oraz wektora u=[1,2,-1].

Znaleźć równanie płaszczyzny przechodzącej przez punkt...

: 6 lut 2009, o 13:59
autor: Crizz
Wektor kierunkowy prostej: \(\displaystyle{ \vec{v}=[2,-1,3]}\)

Skoro płaszczyzna jest równoległa do prostej i do wektora, to jej wektor normalny jest prostopadły do wektorów u i v.

Wystarczy zatem obliczyć \(\displaystyle{ \vec{u} \times \vec{v}}\):

\(\displaystyle{ \vec{u} \times \vec{v}=[5,-5,-5]}\)

Skoro płaszczyzna przechodzi przez punkt P, to opisuje ją równanie:
\(\displaystyle{ 5(x+1)-5(y-3)-5(z-1)=0}\)
\(\displaystyle{ x+1-y+3-z+1=0}\)
\(\displaystyle{ x-y-z+5=0}\)