Strona 1 z 1

Rozwiązać URLy stosując tw. Kroneckera-Capellego

: 21 sty 2009, o 10:33
autor: pawelkazik6
\(\displaystyle{ \left\{\begin{array}{l} 3x+2y-4z=5\\2x+3y-6z=5\\5x-y+2z=4 \end{array}}\)

\(\displaystyle{ \left\{\begin{array}{l} 3x-2y+5z+4t=2\\6x-4y+4z+3t=3\\9x-6y+3z+2t=4 \end{array}}\)

Rozwiązać URLy stosując tw. Kroneckera-Capellego

: 21 sty 2009, o 13:06
autor: miodzio1988
przenies temat.

Rozwiązać URLy stosując tw. Kroneckera-Capellego

: 21 sty 2009, o 18:11
autor: agulka1987
pawelkazik6 pisze:\(\displaystyle{ \left\{\begin{array}{l} 3x+2y-4z=5\\2x+3y-6z=5\\5x-y+2z=4 \end{array}}\)
\(\displaystyle{ \begin{bmatrix}3&2&-4 \left|5\\2&3&-6 \left|5\\5&-1&2 \left|4\end{bmatrix} \rightarrow \begin{bmatrix}3&2&-4 \left|5\\0&\frac{5}{3}&-\frac{10}{3} \left| \frac{5}{3} \\0&-\frac{13}{3}&\frac{26}{3}\left|-\frac{13}{3} \end{bmatrix} \rightarrow \begin{bmatrix}3&2&-4 \left|5\\0&1&2\left| 1\\0&0&0 \left|0\end{bmatrix} \rightarrow \begin{bmatrix}3&0&-8 \left|3\\0&1&2\left| 1\end{bmatrix}}\)

\(\displaystyle{ \begin{cases} 3x=3+8z \Rightarrow x=1+ \frac{8}{3}z \\ y=1-2z \end{cases}}\)

\(\displaystyle{ \left\{\begin{array}{l} 3x-2y+5z+4t=2\\6x-4y+4z+3t=3\\9x-6y+3z+2t=4 \end{array}}\)
analogicznie jak 1

Rozwiązać URLy stosując tw. Kroneckera-Capellego

: 21 sty 2009, o 19:52
autor: pawelkazik6
ok dzięki