Ciągi monotoniczne

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
Hołek
Użytkownik
Użytkownik
Posty: 212
Rejestracja: 1 gru 2008, o 23:37
Płeć: Mężczyzna
Podziękował: 77 razy

Ciągi monotoniczne

Post autor: Hołek » 7 sty 2009, o 12:44

Proszę o wskazówki do zadanych zadań, jestem samoukiem, nie rozumiem tych zadań a one jak mi wiadomo są proste, tak proste że aż trudne

1) Wykaż, że ciąg \(\displaystyle{ (a_{n})}\) jest ciągiem rosnącym, jeśli: np.

\(\displaystyle{ a_{n}=3-\frac{2}{n};}\)

2) Zbadaj monotonicznośc ciągów (czy w tym zadaniu chodzi o samo podstawianie ?):

\(\displaystyle{ a_{n}=n^{2}+3n}\)

3) Ciąg \(\displaystyle{ (a_{n})}\)jest ciągiem malejącym o wyrazach dodatnich. Zbadaj monotonicznośc ciągu\(\displaystyle{ (b_{n})}\), wiedząc, że: np.

\(\displaystyle{ b_{n}=-3a_{n};}\)

Z góry dzięki za pomoc

Awatar użytkownika
sea_of_tears
Użytkownik
Użytkownik
Posty: 1641
Rejestracja: 2 lis 2007, o 20:13
Płeć: Kobieta
Lokalizacja: Śląsk
Podziękował: 30 razy
Pomógł: 548 razy

Ciągi monotoniczne

Post autor: sea_of_tears » 7 sty 2009, o 13:52

zadanie 1
\(\displaystyle{ a_{n+1}-a_n=(3-\frac{2}{n+1})-(3-\frac{2}{n})=
3-\frac{2}{n+1}-3+\frac{2}{n}=\frac{2}{n}-\frac{2}{n+1}=
\frac{2(n+1)}{n(n+1)}-\frac{2n}{n(n+1)}=
\frac{2n+2-2n}{n(n+1)}=\frac{2}{n^2+n}>0}\)

zatem udowodniłam, że jest rosnący

zadanie 2
\(\displaystyle{ a_{n+1}-a_{n}=(n+1)^2+3(n+1)-n^2-3n=
n^2+2n+1+3n+3-n^2-3n=2n+4>0}\)

zatem ciag jest rosnący

[ Dodano: 7 Stycznia 2009, 13:55 ]
zadanie 3
\(\displaystyle{ b_{n+1}-b_n=-3a_{n+1}+3a_n=-3(a_{n+1}-a_{n})}\)
ciąg an jest malejący i o wyrazach dodatnich, zatem \(\displaystyle{ a_{n+1}-a_n0}\)

Awatar użytkownika
Wicio
Użytkownik
Użytkownik
Posty: 1318
Rejestracja: 13 maja 2008, o 21:22
Płeć: Mężczyzna
Podziękował: 3 razy
Pomógł: 561 razy

Ciągi monotoniczne

Post autor: Wicio » 7 sty 2009, o 13:56

1)\(\displaystyle{ a_{n+1}-a_{n}=3-\frac{2}{n+1}-3+\frac{2}{n}=-\frac{2n}{n(n+1)}+\frac{2(n+1)}{n(n+1)}= \frac{-2n+2n+2}{n(n+1)} = \frac{2}{n(n+1)} >0}\)

bo skoro n jest naturalne to mianownik zawsze dodatni, więc całość większa od zera, czyli jest to ciąg rosnący

ODPOWIEDZ