odejmowanie liczb o przestawionych cyfrach

Matematyczne łamigłowki i zagadki...
letta
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 15 maja 2011, o 13:44
Płeć: Kobieta
Podziękował: 15 razy

odejmowanie liczb o przestawionych cyfrach

Post autor: letta »

przyjrzyj się podanym przykładom
95-59=36
32-23= 9
64-46=18

jaką wspólną zależność mają te przykłady?
czy potrafisz uzasadnić dostrzeżone własności?

własności są takie: liczby mają te same cyfry tylko przestawione, wynik jest podzielny przez dziewięć.

Zostaje uzasadnienie, zna ktoś?
szw1710

odejmowanie liczb o przestawionych cyfrach

Post autor: szw1710 »

Zapiszmy \(\displaystyle{ ab=10a+b}\), gdzie \(\displaystyle{ a,b}\) to cyfry dziesiętne. Zatem \(\displaystyle{ ba=10b+a}\). Stąd \(\displaystyle{ ab-ba=10a+b-10b-a=10(a-b)-(a-b)=9(a-b)}\) i koniec dowodu
letta
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 15 maja 2011, o 13:44
Płeć: Kobieta
Podziękował: 15 razy

odejmowanie liczb o przestawionych cyfrach

Post autor: letta »

\(\displaystyle{ ab-ba=10a+b-10b-a=10(a-b)-(a-b)=9(a-b)}\)

dlaczego 10b-a?
i dlaczego na początku jest 10a+b-10b-a, a potem 10(a-b)-(a-b)

proszę o dokładne wyjaśnienie tego równania
szw1710

odejmowanie liczb o przestawionych cyfrach

Post autor: szw1710 »

Po prostu je dokładnie przeanalizuj. Wyciąganie czynnika przed nawias. \(\displaystyle{ 10b-a}\) było błędem, który zauważyłaś wcześniej nim zdążyłem poprawić, ale poprawiłem wcześniej zanim Ty napisałaś ostatni post
letta
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 15 maja 2011, o 13:44
Płeć: Kobieta
Podziękował: 15 razy

odejmowanie liczb o przestawionych cyfrach

Post autor: letta »

racja
ale na początku zapisałes ba= 10b+a
a w równaniu jest 10b-a...
to pomyłka, czy specjalnie, jak specjalnie to dlaczego tak?
szw1710

odejmowanie liczb o przestawionych cyfrach

Post autor: szw1710 »

A jak mnożymy nawiasy? Inaczej musiałabyś zapisać \(\displaystyle{ 10b+a}\) w nawiasie.
letta
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 15 maja 2011, o 13:44
Płeć: Kobieta
Podziękował: 15 razy

odejmowanie liczb o przestawionych cyfrach

Post autor: letta »

właśnie do tego doszłam
a jeszcze jedno pytanie,
10a+b-10b-a=10(a-b)-(a-b)
w tym pogrubionym nie powinno być b-a?
szw1710

odejmowanie liczb o przestawionych cyfrach

Post autor: szw1710 »

Pootwieraj wszystkie nawiasy, a zobaczysz, że jest OK. Kończe już idąc spedzić trochę czasu z żoną i dziećmi. W takich sprawach niech pomagają dalej młodsi Wyjątkowo mocno sie tu zaangażowałem, bo z reguły piszę o analizie wyższej i topologii.
letta
Użytkownik
Użytkownik
Posty: 44
Rejestracja: 15 maja 2011, o 13:44
Płeć: Kobieta
Podziękował: 15 razy

odejmowanie liczb o przestawionych cyfrach

Post autor: letta »

ale dodawanie jest przemienne, więc wychodzi a-b, dobrze myślę?-- 15 maja 2011, o 14:44 --ok
w każdym razie bardzo a bardzo dziękuję
głowiłam się nad tym zadaniem cały tydzień

jeszcze raz bardzo dziękuję za pomoc
foksiu
Użytkownik
Użytkownik
Posty: 5
Rejestracja: 22 kwie 2011, o 13:27
Płeć: Mężczyzna
Lokalizacja: Bielsko-Biała

odejmowanie liczb o przestawionych cyfrach

Post autor: foksiu »

Wynika to z faktu, iż:

\(\displaystyle{ a\cdot 10^{i}\equiv a\cdot 10^{j} (mod 9)}\)

dla dowolnych naturalnych \(\displaystyle{ i,j}\).
szw1710

odejmowanie liczb o przestawionych cyfrach

Post autor: szw1710 »

foksiu, zważ na wiek zadającej pytanie.
ODPOWIEDZ