Znaleźć macierze spełniające równanie

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
Awatar użytkownika
Arst
Użytkownik
Użytkownik
Posty: 767
Rejestracja: 10 mar 2008, o 20:11
Płeć: Mężczyzna
Lokalizacja: University of Warwick
Podziękował: 82 razy
Pomógł: 50 razy

Znaleźć macierze spełniające równanie

Post autor: Arst » 2 lut 2011, o 20:43

Znaleźć wszystkie macierze X spełniające równanie:
\(\displaystyle{ X \cdot \left[\begin{array}{ccc}1&2&-3\\3&2&-4\\2&-1&0\end{array}\right]=\left[\begin{array}{ccc}1&0&1\\2&2&0\\0&1&1\\-1&0&1 \end{array}\right]}\)
Chciałbym poznać jaka jest najszybsza metoda rozwiązania tego zadania?
Znalazłem jedną macierz \(\displaystyle{ 4 \times 3}\) przekształcając:
\(\displaystyle{ XA=B \rightarrow X=BA^{-1}}\)
Ale to chyba jeszcze nie koniec zadania?

Dodatkowo chciałbym się dowiedzieć w sprawie układu z parametrem, jeśli mam znaleźć wszystkie liczby dla których układ: nie ma rozwiązań, ma dokładnie jedno rozwiązanie, ma więcej niż jedno rozwiązanie, to jak powinienem postąpić? Np. w przypadku takiego układu:

\(\displaystyle{ 5x_1+2x_2-x_3=1 \\ 2x_1+3x_2+4x_3=7 \\ 4x_1-5x_2+ \lambda x_3= \lambda-5}\)

Potraktowałem go Gaussem i stwierdziłem, że dla \(\displaystyle{ \lambda \not =-14}\) ma dokładnie jedno rozwiązanie, dla \(\displaystyle{ \lambda=14}\) rozwiązań nie ma (sprzeczny), ale jak znaleźć parametry dla których układ ma więcej niż jedno rozwiązanie?

Dzięki za odpowiedzi.

Pozdrawiam,
A.

Gość Specjalny
Gość Specjalny
Posty: 9834
Rejestracja: 18 gru 2007, o 03:54
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 90 razy
Pomógł: 2626 razy

Znaleźć macierze spełniające równanie

Post autor: » 2 lut 2011, o 21:52

Arst pisze:\(\displaystyle{ XA=B \rightarrow X=BA^{-1}}\)
Ale to chyba jeszcze nie koniec zadania?
Owszem, koniec (no, trzeba jeszcze policzyć tę macierz odwrotną, a potem wymnożyć macierze).
Potraktowałem go Gaussem i stwierdziłem, że dla \(\displaystyle{ \lambda \not =-14}\) ma dokładnie jedno rozwiązanie, dla \(\displaystyle{ \lambda=14}\) rozwiązań nie ma (sprzeczny), ale jak znaleźć parametry dla których układ ma więcej niż jedno rozwiązanie?
Po pierwsze: lepiej było Cramerem.
Po drugie: w ogólności przecież może nie istnieć lambda dla którego układ jest nieoznaczony.
Po trzecie: chyba się pomyliłeś, bo dla minus czternastki wychodzi układ nieoznaczony. W takim razie nie ma takiej wartości lambda, dla której układ byłby sprzeczny.

Q.

Awatar użytkownika
Arst
Użytkownik
Użytkownik
Posty: 767
Rejestracja: 10 mar 2008, o 20:11
Płeć: Mężczyzna
Lokalizacja: University of Warwick
Podziękował: 82 razy
Pomógł: 50 razy

Znaleźć macierze spełniające równanie

Post autor: Arst » 2 lut 2011, o 21:58

Możliwe, że zrobiłem błąd, zrobię ten przykład raz jeszcze, dzięki za pomoc

Jeszcze takie pytanie:
czy jeśli mam znaleźć niezerowe rozwiązania równania: \(\displaystyle{ (A-\lambda I)X=0}\), to badam wyznacznik macierzy \(\displaystyle{ (A-\lambda I)}\)?

ODPOWIEDZ