Całka nieoznaczona.
- pingus18
- Użytkownik

- Posty: 75
- Rejestracja: 4 lut 2010, o 17:15
- Płeć: Mężczyzna
- Lokalizacja: Cracov
- Podziękował: 3 razy
Całka nieoznaczona.
Czy ktoś może pomóc z tą całką, bo mi totalne bzdury wychodzą już...?
\(\displaystyle{ \int(2x+1) 3^{x} \mbox{d}x}\)
\(\displaystyle{ \int(2x+1) 3^{x} \mbox{d}x}\)
-
LastSeeds
- Użytkownik

- Posty: 346
- Rejestracja: 17 cze 2008, o 22:01
- Płeć: Mężczyzna
- Lokalizacja: Krk
- Podziękował: 41 razy
- Pomógł: 17 razy
Całka nieoznaczona.
Przez czesci
\(\displaystyle{ u=2x+1 \rightarrow u'=2 \wedge
v'=3^x \rightarrow v=3^x/ln3}\) podstawiasz do wzoru i zostanie CI całka z 3^x do obliczenia tylko
\(\displaystyle{ u=2x+1 \rightarrow u'=2 \wedge
v'=3^x \rightarrow v=3^x/ln3}\) podstawiasz do wzoru i zostanie CI całka z 3^x do obliczenia tylko
- pingus18
- Użytkownik

- Posty: 75
- Rejestracja: 4 lut 2010, o 17:15
- Płeć: Mężczyzna
- Lokalizacja: Cracov
- Podziękował: 3 razy
Całka nieoznaczona.
A co z tego wyjdzie, bo już sam nie wiem z takiej całki?
\(\displaystyle{ \int \frac{3^x}{ln3} dx}\)
\(\displaystyle{ \int \frac{3^x}{ln3} dx}\)
- pingus18
- Użytkownik

- Posty: 75
- Rejestracja: 4 lut 2010, o 17:15
- Płeć: Mężczyzna
- Lokalizacja: Cracov
- Podziękował: 3 razy
Całka nieoznaczona.
A ta całka: \(\displaystyle{ \int \frac{1}{ x^{2} } \arctan x dx}\) ? Czy ona jest przez częsci?
- M Ciesielski
- Użytkownik

- Posty: 2500
- Rejestracja: 21 gru 2005, o 15:43
- Płeć: Mężczyzna
- Lokalizacja: Bytom
- Podziękował: 44 razy
- Pomógł: 302 razy
- pingus18
- Użytkownik

- Posty: 75
- Rejestracja: 4 lut 2010, o 17:15
- Płeć: Mężczyzna
- Lokalizacja: Cracov
- Podziękował: 3 razy
Całka nieoznaczona.
Czy wie ktoś może jak rozwiązać taką całkę:
\(\displaystyle{ \int \frac{sin \sqrt{x} }{ \sqrt{x}*cos \sqrt{x} }}\)
\(\displaystyle{ \int \frac{sin \sqrt{x} }{ \sqrt{x}*cos \sqrt{x} }}\)
- Mariusz M
- Użytkownik

- Posty: 6953
- Rejestracja: 25 wrz 2007, o 01:03
- Płeć: Mężczyzna
- Lokalizacja: 53°02'N 18°35'E
- Podziękował: 2 razy
- Pomógł: 1254 razy
Całka nieoznaczona.
\(\displaystyle{ t=\cos{ \sqrt{x} }}\)
oczywiście jeżeli w mianowniku jest mnożenie a nie takie coś
\(\displaystyle{ \int_{0}^{t}{f\left( \tau\right)g\left( t-\tau\right) \mbox{d}\tau}}\)
oczywiście jeżeli w mianowniku jest mnożenie a nie takie coś
\(\displaystyle{ \int_{0}^{t}{f\left( \tau\right)g\left( t-\tau\right) \mbox{d}\tau}}\)
