Jak się zabrać do zadań tego typu

Zdania. Tautologie. Język matematyki. Wszelkie zagadnienia związane z logiką matematyczną...
Awatar użytkownika
peon
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 26 maja 2010, o 17:26
Płeć: Mężczyzna
Lokalizacja: Biała Podlaska

Jak się zabrać do zadań tego typu

Post autor: peon »

Witam,

mam takie zadanie:

Wykaż, że spośród czterech poniższych zdań dokładnie dwa są prawdziwe:
Alfa: Beta zawsze kłamie.
Beta: Gamma przynajmniej czasem mówi prawdę.
Gamma: Delta przynajmniej czasem kłamie.
Delta: Alfa zawsze mówi prawdę.

nie mam pojęcia w jaki sposób taki problem opisać za pomocą logiki matematycznej.

pozdrawiam,
peon
Rafał1993
Użytkownik
Użytkownik
Posty: 90
Rejestracja: 20 gru 2007, o 18:28
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 36 razy
Pomógł: 5 razy

Jak się zabrać do zadań tego typu

Post autor: Rafał1993 »

Nie wiem, jak to ma być, ale takie coś mi wpadło do głowy.

Jeżeli Alfa mówi prawdę, to Beta zawsze kłamie.

Jeżeli Beta zawsze kłamie, to Gamma nigdy nie mówi prawdy.

Jeżeli Gamma nigdy nie mówi prawdy, to Delta zawsze mówi prawdę.

Jeżeli Delta zawsze mówi prawdę, to Alfa zawsze mówi prawdę.

Ostatnie pokryło się z pierwszym, czy wszystkie powyższe implikacje są prawdziwe, a ponadto każde ze zdań składowych jest prawdziwe. Więc porównujemy ze zdaniami z treści zadania i wychodzi, że kłamie Beta i Gamma. Czy prawdę mówi Alfa i Delta.

??? Obarczone wątpliwością. ???

--- Brak zapisu zgodnego z logiką matematyczną ---
ZAK
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 27 maja 2010, o 15:41
Płeć: Mężczyzna
Lokalizacja: Polska
Pomógł: 1 raz

Jak się zabrać do zadań tego typu

Post autor: ZAK »

Wydaje mi się, że wszystko sprowadza się do pewnych założeń. Masz udowodnić, że dokładnie dwa zdania z podanych 4 są prawdziwe, tzn. z dwóch zdań prawdziwych mają wynikać pozostałe zdania, które będą fałszywe. Czyli musisz rozpatrzyć parami wszystkie możliwe przypadki, założyć, że np. pierwsze dwa zdania są prawdziwe i z tego dowieść, że zdanie 3 i 4 są fałszywe. W końcu dojdziesz do momentu, w którym PRZYKŁADOWO zdania 1 i 3 są prawdziwe, a 2 i 4 fałszywe tylko w tym przypadku, a w żadnym innym.
ODPOWIEDZ