Niech \(\displaystyle{ <x,y> \in R \times R}\)
\(\displaystyle{ Sn = \{ x^{2}+y^{2} \le n^{2}\}}\) gdzie\(\displaystyle{ n \in N}\)
Proszę wyznaczyć :
\(\displaystyle{ \bigcup_{n=1}^{\infty} (An+1/ An}\))
Suma uogolniona
-
FAUSTVIII
- Użytkownik

- Posty: 26
- Rejestracja: 15 gru 2008, o 22:42
- Płeć: Mężczyzna
- Lokalizacja: Senbonzakura
Suma uogolniona
Ostatnio zmieniony 20 lut 2010, o 17:42 przez Zordon, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.
Powód: Poprawa wiadomości.
-
Crizz
- Użytkownik

- Posty: 4084
- Rejestracja: 10 lut 2008, o 15:31
- Płeć: Mężczyzna
- Lokalizacja: Łódź
- Podziękował: 12 razy
- Pomógł: 805 razy
Suma uogolniona
Przecież \(\displaystyle{ A_{n} \subset A_{n+1}}\), zatem
\(\displaystyle{ (A_{n+1} \backslash A_{n}) \cup (A_{n+2} \backslash A_{n+1})=A_{n+2}\backslash A_{n}}\)
\(\displaystyle{ (A_{n+1} \backslash A_{n}) \cup (A_{n+2} \backslash A_{n+1}) \cup (A_{n+3} \backslash A_{n+2})=A_{n+3}\backslash A_{n}}\) itd.
Mamy więc
\(\displaystyle{ \bigcup_{n=1}^{p} (A_{n+1} \backslash A_{n}) =A_{p+1}/A_{1}}\)
\(\displaystyle{ \bigcup_{n=1}^{\infty}(A_{n+1} \backslash A_{n})=A_{\infty}/A_{1}}\)
\(\displaystyle{ \bigcup_{n=1}^{\infty}(A_{n+1} \backslash A_{n})=\{(x,y):x^{2}+y^{2} \le \infty\} \backslash \{(x,y):x^{2}+y^{2} \le 1\}= \\ =\{(x,y):x^{2}+y^{2}>1\}}\)
\(\displaystyle{ (A_{n+1} \backslash A_{n}) \cup (A_{n+2} \backslash A_{n+1})=A_{n+2}\backslash A_{n}}\)
\(\displaystyle{ (A_{n+1} \backslash A_{n}) \cup (A_{n+2} \backslash A_{n+1}) \cup (A_{n+3} \backslash A_{n+2})=A_{n+3}\backslash A_{n}}\) itd.
Mamy więc
\(\displaystyle{ \bigcup_{n=1}^{p} (A_{n+1} \backslash A_{n}) =A_{p+1}/A_{1}}\)
\(\displaystyle{ \bigcup_{n=1}^{\infty}(A_{n+1} \backslash A_{n})=A_{\infty}/A_{1}}\)
\(\displaystyle{ \bigcup_{n=1}^{\infty}(A_{n+1} \backslash A_{n})=\{(x,y):x^{2}+y^{2} \le \infty\} \backslash \{(x,y):x^{2}+y^{2} \le 1\}= \\ =\{(x,y):x^{2}+y^{2}>1\}}\)