[Rozgrzewka OM][MIX][Nierówności] Nierówności

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Awatar użytkownika
Swistak
Użytkownik
Użytkownik
Posty: 1874
Rejestracja: 30 wrz 2007, o 22:04
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 99 razy
Pomógł: 87 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Swistak »

No to tu macie:

1 raczej trywialna, 3 raczej cięższa (tzn. ja bym na pewno nie zrobił, ale mamy tutaj niezłych rozkminiaczy i dla nich chyba taka trudna nie będzie ).
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Piotr Rutkowski »

Dumel pisze:ok może coś takiego:
\(\displaystyle{ \frac{1}{ \sqrt{4n} } \le \frac{1}{2}\cdot \frac{3}{4} \cdot \ldots \cdot \frac{2n-1}{2n}< \frac{1}{ \sqrt{2n} }}\)
Wystarczy dorobić pomocniczy ciąg, który bedzie nam ładnie zwijał iloczyn...
Co do tej "trudniejszej" nierówności nr 3, to sprowadza się ona do pomnożenia przez mianownik po prawej stronie, pomnożenia przez 2 i zastosowania AM-GM...
Dumel
Użytkownik
Użytkownik
Posty: 2000
Rejestracja: 19 lut 2008, o 17:35
Płeć: Mężczyzna
Lokalizacja: Stare Pole/Kraków
Podziękował: 60 razy
Pomógł: 202 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Dumel »

Wystarczy dorobić pomocniczy ciąg, który bedzie nam ładnie zwijał iloczyn...
wrzuciłem ją z myślą o początkujących, aby zobaczyli
Ukryta treść:    
pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: pawelsuz »

Piotr Rutkowski, mógłbyś pokazać to rozwiązanie nierówności z 3 zad z tego linka?
I tak w ogóle to była umowa, że wrzucamy całe rozwiązania, a nie rzucamy pomysłami, więc można by się tego trzymać...
Awatar użytkownika
limes123
Użytkownik
Użytkownik
Posty: 666
Rejestracja: 21 sty 2008, o 22:48
Płeć: Mężczyzna
Lokalizacja: Ustroń
Podziękował: 26 razy
Pomógł: 93 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: limes123 »

Mamy po przemnozeniu stronami \(\displaystyle{ \sum\frac{abc+1}{ab+a}\geq 3}\) i dodajemy sobie stronami po trzy jedynki. Dostajemy \(\displaystyle{ \sum\frac{abc+ab+a+1}{ab+a}\geq 6\iff \sum \frac{b(c+1)}{a+1}+\sum\frac{a+1}{a(b+1)}\geq 3(\sqrt[3]{abc}+\frac{1}{\sqrt[3]{abc}})\geq 6}\).
pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: pawelsuz »

Dzięki:d
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Piotr Rutkowski »

Albo (zupełnie analogicznie):
\(\displaystyle{ 2\sum_{cyc}\frac{1+abc}{a(b+1)}=\sum_{cyc}\frac{1+a+abc+ab}{a(b+1)}=\sum_{cyc}(\frac{1+a}{a(b+1)}+\frac{ab(c+1)}{b+1})=\sum_{cyc}(\frac{1+a}{a(b+1)}+\frac{b(c+1)}{b+1})\geq 6\sqrt[6]{\prod_{cyc}(\frac{1+a}{a(b+1)}\cdot \frac{b(c+1)}{b+1})}=6}\)

W takim razie trzymając się konwencji czuję się zobligowany do podania rozwiązania także do tamtego zadanka:

Niech \(\displaystyle{ a_{n}=\frac{2n-1}{2n}}\). Teraz zdefiniujmy \(\displaystyle{ b_{n}}\) w następujący sposób:
-\(\displaystyle{ b_{1}=1}\)
-\(\displaystyle{ \forall_{n\geq 2} \ b_{n}=\frac{2n-2}{2n-1}}\)
Zauważmy, że zachodzą następujące nierówności:
1) \(\displaystyle{ (a_{n}\leq b_{n})\iff (a_{n}\leq \sqrt{a_{n}b_{n}})}\)
2) \(\displaystyle{ (a_{n}\geq b_{n+1})\iff (a_{n}\geq \sqrt{a_{n}b_{n+1}})}\)
Teraz mnożąc te nierówności odpowiednią ilość razy otrzymamy:
\(\displaystyle{ \frac{1}{\sqrt{4n}}<\frac{1}{\sqrt{2n+1}}=\sqrt{\prod_{i=1}^{n}a_{n}b_{n+1}}=\prod_{i=1}^{n}\sqrt{a_{n}b_{n+1}}\leq \prod_{i=1}^{n}a_{n}<\prod_{i=1}^{n}\sqrt{a_{n}b_{n}}=\sqrt{\prod_{i=1}^{n}a_{n}b_{n}}=\frac{1}{\sqrt{2n}}}\)
Pozdrawiam
pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: pawelsuz »

Niech \(\displaystyle{ a,b,c}\) będą bokami trójkąta, a \(\displaystyle{ s}\) jego polem. Udowodnić, że zachodzi:
\(\displaystyle{ a^2+b^2+c^2 \ge 4 \sqrt{3} s}\)
Piotr Rutkowski
Użytkownik
Użytkownik
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 390 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Piotr Rutkowski »

Standardowe podstawienie \(\displaystyle{ a=x+y ...}\) itd. w połączeniu z wzorem Herona daje nam:
\(\displaystyle{ \sum_{cyc}(x+y)^{2}\geq 4\sqrt{3}\sqrt{(x+y+z)xyz}}\) co można udowodnić na milion sposobów np.:
\(\displaystyle{ \sum_{cyc}(x+y)^{2}\geq 4\sum_{cyc}xy=4\sqrt{(\sum_{cyc}xy)^{2}}= 4\sqrt{(\sum_{cyc}(xy)^{2})+2(\sum_{cyc}xy\cdot yz)}\geq 4\sqrt{3\sum_{cyc}xy\cdot yx}=4\sqrt{3}\sqrt{(x+y+z)xyz}}\)
Q.E.D.
Awatar użytkownika
jerzozwierz
Użytkownik
Użytkownik
Posty: 526
Rejestracja: 22 lut 2009, o 10:13
Płeć: Mężczyzna
Lokalizacja: Rzeszów
Podziękował: 8 razy
Pomógł: 42 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: jerzozwierz »

Można inaczej.
\(\displaystyle{ \frac{a^{2}+b^{2}+c^{2}}{2S} \ge \frac{ab+bc+ca}{2S}= \frac{1}{\sin \alpha}+ \frac{1}{\sin \beta}+ \frac{1}{\sin \gamma} \ge 2 \sqrt{3}}\) z Jensena.
Ostatnio zmieniony 7 maja 2021, o 21:10 przez Jan Kraszewski, łącznie zmieniany 2 razy.
Powód: Poprawa wiadomości.
binaj
Użytkownik
Użytkownik
Posty: 547
Rejestracja: 20 lis 2007, o 15:03
Płeć: Mężczyzna
Lokalizacja: Bielsko-Biała
Podziękował: 37 razy
Pomógł: 120 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: binaj »

Liczy rzeczywiste \(\displaystyle{ x_1,x_2...x_n}\) spełniają warunek: \(\displaystyle{ x_1+x_2+...+x_n=0}\)

Niech \(\displaystyle{ m}\) będzie najmniejszą z tych liczb, a \(\displaystyle{ M}\) największą.

Dowieść, że zachodzi: \(\displaystyle{ x_1^2+x_2^2+...+x_n^2 \le -nmM}\)
Dumel
Użytkownik
Użytkownik
Posty: 2000
Rejestracja: 19 lut 2008, o 17:35
Płeć: Mężczyzna
Lokalizacja: Stare Pole/Kraków
Podziękował: 60 razy
Pomógł: 202 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: Dumel »

raczej proste, ale przy pisaniu rozwiązania ciągle m myliło mi się z n - to taki ukryty haczyk więc uważajcie
inny
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 21 gru 2009, o 18:36
Płeć: Mężczyzna
Lokalizacja: inny świat
Podziękował: 2 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: inny »

Dumel może wrzuć rozwiązanie, bo temat stoi..
binaj
Użytkownik
Użytkownik
Posty: 547
Rejestracja: 20 lis 2007, o 15:03
Płeć: Mężczyzna
Lokalizacja: Bielsko-Biała
Podziękował: 37 razy
Pomógł: 120 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: binaj »

wskazówka:    
pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

[Rozgrzewka OM][MIX][Nierówności] Nierówności

Post autor: pawelsuz »

No teraz to już banał:P
Zgodnie z wskazówką, tworzymy n takich nierówności, wymnażamy przez nawiasy i dodajemy stronami otrzymując
\(\displaystyle{ M( \sum_{i=1}^{n}x_{i})+m(\sum_{i=1}^{n}x_{i})-nmM \ge \sum_{i=1}^{n}x_{i}^{2}}\)
Korzystając z założenia \(\displaystyle{ \sum_{i=1}^{n}x_{i}=0}\) mamy tezę.

-- 29 grudnia 2009, 00:47 --

Dane są liczby dodatnie spełniające nierówność
\(\displaystyle{ \sqrt{\frac{bcd}{a}}+\sqrt{\frac{acd}{b}}+\sqrt{\frac{abd}{c}}+\sqrt{\frac{abc}{d}}\leq (a+b)(c+d)}\)
Udowodnić, że prawdziwa jest nierówność:
\(\displaystyle{ \frac{bd}{a}+\frac{ac}{b}+\frac{ad}{c}+\frac{bc}{d}\geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}\)
ODPOWIEDZ