Dwa okręgi w trójkącie

Wielokąty (n>3). Okręgi. Inne figury płaskie. Zadania i twierdzenia z nimi związane. Geometria rzutowa na płaszczyżnie.
41421356
Użytkownik
Użytkownik
Posty: 580
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 541 razy
Pomógł: 5 razy

Dwa okręgi w trójkącie

Post autor: 41421356 »

Dany jest trójkąt prostokątny o długościach boków równych \(\displaystyle{ a, b, c}\), które spełniają nierówność \(\displaystyle{ a≤b<c}\). W trójkąt ten wpisano okrąg, a następnie poprowadzono styczną do wpisanego okręgu, która jest prostopadła do boku \(\displaystyle{ b}\), następnie w nowo powstały trójkąt ponownie wpisano okrąg o promieniu \(\displaystyle{ x}\). Wykaż, że \(\displaystyle{ x=\frac{a\left(c-a\right)}{a+b+c}}\).

Moje pytanie brzmi, czy tutaj nie ma przypadkiem błędu w treści? Mi wychodzi:
\(\displaystyle{ x=\frac{a^2}{a+b+c}}\).
a4karo
Użytkownik
Użytkownik
Posty: 22461
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 43 razy
Pomógł: 3852 razy

Re: Dwa okręgi w trójkącie

Post autor: a4karo »

Pokaż jak liczysz
Awatar użytkownika
JHN
Użytkownik
Użytkownik
Posty: 728
Rejestracja: 8 lip 2007, o 18:09
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 7 razy
Pomógł: 245 razy

Re: Dwa okręgi w trójkącie

Post autor: JHN »

Wtrącę się, przepraszam,: ja bym wykorzystał podobieństwo trójkątów i
\[x=\dfrac{b-2r}{b}\cdot r \quad\text{gdzie}\quad r=\dfrac{a+b-c}{2}\]
pozostaje doliczyć...

Pozdrawiam
41421356
Użytkownik
Użytkownik
Posty: 580
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 541 razy
Pomógł: 5 razy

Re: Dwa okręgi w trójkącie

Post autor: 41421356 »

Doliczam i wychodzi jednak co innego niż pisałem wcześniej:

\(\displaystyle{ x=\frac{ab\left(b+c-a\right)}{a+b+c}}\)

Dalej nie wiem co mam z tym zrobić aby uzyskać tezę.
Jan Kraszewski
Administrator
Administrator
Posty: 36051
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 6 razy
Pomógł: 5341 razy

Re: Dwa okręgi w trójkącie

Post autor: Jan Kraszewski »

No to pokaż, jak liczysz...

JK
a4karo
Użytkownik
Użytkownik
Posty: 22461
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 43 razy
Pomógł: 3852 razy

Re: Dwa okręgi w trójkącie

Post autor: a4karo »

41421356 pisze: 27 mar 2025, o 17:44 Doliczam i wychodzi jednak co innego niż pisałem wcześniej:

\(\displaystyle{ x=\frac{ab\left(b+c-a\right)}{a+b+c}}\)

Dalej nie wiem co mam z tym zrobić aby uzyskać tezę.
Tak na pewno nie może być.. jednostki się nie zgadzają
anna_
Użytkownik
Użytkownik
Posty: 16317
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 35 razy
Pomógł: 3254 razy

Re: Dwa okręgi w trójkącie

Post autor: anna_ »

Promień okręgu wpisanego w duży trójkąt
\(\displaystyle{ r = \frac{a + b - c}{2}}\)

Boki małego trójkąta \(\displaystyle{ a', b', c'}\)

Promień okręgu wpisanego w mały trójkąt
\(\displaystyle{ x=\frac{a' + b'-c'}{2}}\)

\(\displaystyle{ b'=b-2r\\\\
b'=b-2\cdot \frac{a + b - c}{2}\\\\
b'=b-(a + b - c)\\\\
b'=b-a - b + c\\\\
b'=c-a}\)


Z podobieństwa trójkątów
\(\displaystyle{ \frac{a'}{a}=\frac{b'}{b}\\\\
\frac{a'}{a}=\frac{c-a}{b}\\\\
a'=\frac{a(c-a)}{b}}\)


\(\displaystyle{ \frac{c'}{c}=\frac{b'}{b}\\\\
\frac{c'}{c}=\frac{c-a}{b}\\\\
c'=\frac{c(c-a)}{b}}\)


Pole małego trójkąta
\(\displaystyle{ P=\frac{1}{2}b'a'}\)

\(\displaystyle{ P=\frac{1}{2}x(a'+b'+c')}\)

\(\displaystyle{ \frac{1}{2}x(a'+b'+c')=\frac{1}{2}b'a'}\)

\(\displaystyle{ x=\frac{b'a'}{a'+b'+c'}}\)
anna_
Użytkownik
Użytkownik
Posty: 16317
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 35 razy
Pomógł: 3254 razy

Re: Dwa okręgi w trójkącie

Post autor: anna_ »

Wyjdzie
\(\displaystyle{ x=\frac{a\left(c-a\right)}{a+b+c}}\)
JHN pisze: 27 mar 2025, o 17:01 Wtrącę się, przepraszam,: ja bym wykorzystał podobieństwo trójkątów i
\[x=\dfrac{b-2r}{b}\cdot r \quad\text{gdzie}\quad r=\dfrac{a+b-c}{2}\]
pozostaje doliczyć...

Pozdrawiam
Z tego to mi wyszło
\(\displaystyle{ x=\frac{(a + b - c)(c - a)}{2b}}\)

\(\displaystyle{ x=\frac{(a+b+c)(a+b-c)(c-a)}{2b(a+b+c)}\\\\
x=\frac{((a+b)^2-c^2)(c-a)}{2b(a+b+c)}\\\\
x=\frac{((a+b)^2-c^2)(c-a)}{2b(a+b+c)}\\\\
x=\frac{(a^2+2ab+b^2-c^2)(c-a)}{2b(a+b+c)}\\\\
x=\frac{(c^2+2ab-c^2)(c-a)}{2b(a+b+c)}\\\\
x=\frac{2ab(c-a)}{2b(a+b+c)}\\\\
x=\frac{a(c-a)}{a+b+c}\\\\}\)
41421356
Użytkownik
Użytkownik
Posty: 580
Rejestracja: 11 maja 2016, o 13:36
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 541 razy
Pomógł: 5 razy

Re: Dwa okręgi w trójkącie

Post autor: 41421356 »

Dziękuję Wszystkim za pomoc. Ułożyłem nieprawdziwą proporcję, stąd był mój błąd. Teraz już wszystko jasne.
ODPOWIEDZ