Czy poprawne jest podstawienie

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Szustarol
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 10 mar 2018, o 18:11
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 11 razy
Pomógł: 1 raz

Czy poprawne jest podstawienie

Post autor: Szustarol » 23 lis 2019, o 17:12

Czy poprawne jest podstawienie:
\(\displaystyle{ \int (3+2x^{1\over4})^3dx = \left| t = 2x^{1\over4}+3 \Rightarrow dt = {{dx} \over {2x^{3\over4}}} \Rightarrow dx= 2 \cdot {({{t-3} \over 2})^3} dt \right| }\)

Chodzi mi o to, że już na liczeniu pochodnej przy podstawieniu, jako wartość x do pochodnej "wkładam" wartość t określoną na podstawie x?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

janusz47
Użytkownik
Użytkownik
Posty: 6084
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 12 razy
Pomógł: 1305 razy

Re: Czy poprawne jest podstawienie

Post autor: janusz47 » 23 lis 2019, o 17:59

\(\displaystyle{ 3 + 2x^{\frac{1}{4}} = t \rightarrow x^{\frac{1}{4}} = \frac{t-3}{2} }\)

\(\displaystyle{ \frac{1}{2}\cdot x ^{-\frac{3}{4}} dx = dt }\)

Stąd

\(\displaystyle{ dx = 2x^{\frac{3}{4}} dt = 2 \left(x^{\frac{1}{4}}\right)^3 dt = 2 \left(\frac{t -3}{2}\right)^3 dt = 2 \frac{(t-3)^3}{8}dt = \frac{(t-3)^3}{4}dt .}\)

Podstawienie poprawne.
Ostatnio zmieniony 23 lis 2019, o 18:29 przez janusz47, łącznie zmieniany 5 razy.

Szustarol
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 10 mar 2018, o 18:11
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 11 razy
Pomógł: 1 raz

Re: Czy poprawne jest podstawienie

Post autor: Szustarol » 23 lis 2019, o 18:05

janusz47 pisze:
23 lis 2019, o 17:59
\(\displaystyle{ 3 + 2x^{\frac{1}{4}} = t \rightarrow x^{\frac{1}{4}} = \frac{t-3}{2} }\)

\(\displaystyle{ 2\cdot x ^{-\frac{3}{4}} dx = dt }\)

Stąd

\(\displaystyle{ dx = 2\cdot x^{\frac{3}{4}} dt = 2\cdot \left(x^{\frac{1}{4}}\right)^3 dt = 2\cdot \left(\frac{t -3}{2}\right)^3 dt = \frac{(t-3)^3}{4}.}\)

Podstawienie poprawne.
Nie chodzi mi tyle o część obliczeniową, a bardziej o samą "rozsądność" takiego podstawienia - mnożymy w końcu coś bardzo małego - dx, przez jakąś zmienną, nie wiem na ile takie podstawianie jest "matematycznie ładne"

janusz47
Użytkownik
Użytkownik
Posty: 6084
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 12 razy
Pomógł: 1305 razy

Re: Czy poprawne jest podstawienie

Post autor: janusz47 » 23 lis 2019, o 18:08

Co to znaczy matematycznie ładne? Jest poprawne.

ODPOWIEDZ