Kilka zadań - kombinatoryka

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
Makoszet
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 11 lut 2017, o 19:22
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy

Kilka zadań - kombinatoryka

Post autor: Makoszet » 5 lip 2019, o 21:52

Hej,

Mam kilka takich zadań, które sprawiają mi problem:

Zad 1.
Liczba wszystkich funkcji ze zboru \(\displaystyle{ \left\{ 1,2,3,4\right\}}\) w zbiór \(\displaystyle{ \left\{ a,b,c\right\}}\) przyjmujących przynajmniej raz wartość \(\displaystyle{ a}\).

O ile się nie mylę to liczba wszystkich możliwości to: \(\displaystyle{ 3 \cdot 3 \cdot 3 \cdot 3 = 81.}\)
Ale nie mogę poradzić sobie z tym dodatkowym warunkiem.

Zad 2.
Liczba możliwych rozmieszczeń \(\displaystyle{ 7}\) nierozróżnialnych kul w \(\displaystyle{ 3}\) ponumerowanych komórkach takich, że żadna komórka nie będzie pusta.

I tak samo wszystkie możliwości to chyba są:

\(\displaystyle{ {k+n-1 \choose n-1} = {7+3-1 \choose 3-1} = {9 \choose 2} = \frac{9!}{2! \cdot 7!} = 36}\)

a jak rozpatrzyć to z dodatkowym warunkiem?
Ostatnio zmieniony 5 lip 2019, o 22:03 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa także do pojedynczych symboli. Interpunkcja.

Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 2942
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 72 razy
Pomógł: 977 razy

Re: Kilka zadań - kombinatoryka

Post autor: Janusz Tracz » 5 lip 2019, o 22:09

Na pierwsze spojrzał bym tak:
\(\displaystyle{ {4 \choose 1}2^3}\) tyle jest możliwości na wybranie jednego miejsca dla \(\displaystyle{ a}\) i obsadzenie trzech pozostałych literami \(\displaystyle{ b,c}\).
\(\displaystyle{ {4 \choose 2}2^2}\) tyle jest możliwości na wybranie dwóch miejsc dla \(\displaystyle{ a}\) i obsadzenie dwóch pozostałych literami \(\displaystyle{ b,c}\).
\(\displaystyle{ {4 \choose 3}2}\) tyle jest możliwości na wybranie trzech miejsc dla \(\displaystyle{ a}\) i obsadzenie ostatniego literami \(\displaystyle{ b,c}\).
No i jeszcze jedna opcja gdzie funkcja odwzorowuje wszystko na \(\displaystyle{ a}\).

Są to zdarzenia rozłączne więc ich suma powinna być odpowiedzią. Jestem słaby z kombinatoryki więc nie traktuj tego jak prawdy objawionej z internetu ale tak to widzę...

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7752
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 236 razy
Pomógł: 3049 razy

Re: Kilka zadań - kombinatoryka

Post autor: kerajs » 5 lip 2019, o 22:12

1)
Inaczej:
Od wszystkich funkcji odejmuję te których zbiór wartości nie zawiera \(\displaystyle{ a}\)
\(\displaystyle{ il=3^4-2^4}\)


2)
Raczej:
\(\displaystyle{ il= {7-1 \choose 3-1}}\)
439545.htm#p5574622

ODPOWIEDZ