Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
abcdqwe
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 2 gru 2017, o 18:42
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: abcdqwe » 2 gru 2017, o 18:49

\(\displaystyle{ f(x,y)= \begin{cases} \frac{Cxy }{ 1+x^{4} } &\mbox{dla }0 \le x \le 1\ \wedge\ 0 \le y \le 2, \\ 0 &\mbox{przeciwnie} \end{cases}}\)

Wyznaczyć \(\displaystyle{ C}\) oraz wartość dystrybuanty \(\displaystyle{ F(2,1)}\).

Problem jest raz, nie wiem jak całkę przy wyznaczaniu \(\displaystyle{ C}\) obliczyć z tego.
Ostatnio zmieniony 3 gru 2017, o 01:58 przez SlotaWoj, łącznie zmieniany 3 razy.
Powód: Poprawa wiadomości. Spacja to „\ ”, koniunkcja to \wedge.

Awatar użytkownika
Igor V
Użytkownik
Użytkownik
Posty: 1605
Rejestracja: 16 lut 2011, o 16:48
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 18 razy
Pomógł: 603 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: Igor V » 2 gru 2017, o 19:37

\(\displaystyle{ \int_{0}^{1} \mbox{d}x \int_{0}^{2} \frac{Cxy}{ 1+x^{4}}\mbox{d}y = 1}\)

Odstępy zrobisz slashem.
Nie prawda!
Znak „” nazywa się backslash-em.

Odstęp zrobisz dwuznakiem: backslash-spacja = „ ”.
Ostatnio zmieniony 3 gru 2017, o 02:07 przez SlotaWoj, łącznie zmieniany 1 raz.
Powód: Korekta nazwy znaku.

abcdqwe
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 2 gru 2017, o 18:42
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: abcdqwe » 2 gru 2017, o 19:40

Dzięki, wiem jak zapisać całkę, nie wiem jak ją obliczyć.

Awatar użytkownika
Igor V
Użytkownik
Użytkownik
Posty: 1605
Rejestracja: 16 lut 2011, o 16:48
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 18 razy
Pomógł: 603 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: Igor V » 2 gru 2017, o 21:12

A jakieś próby ? To nie jest trudna całka. Jak przejdziesz do całkowania po \(\displaystyle{ \mbox{d}x}\) to skorzystaj np: z podstawienia \(\displaystyle{ t = x^2}\) wychodząc na dość znaną całkę.

abcdqwe
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 2 gru 2017, o 18:42
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 5 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: abcdqwe » 2 gru 2017, o 21:56

Dzięki, obliczyłem z tą wskazówką

Teraz głowie się co z dystrybuantą F(2,1).

Powinienem się ograniczyć do miejsc gdzie wartości są różne 0 i tu jest problem bo o ile y w 1 jest różny od 0, to x w 2 jest 0...

Awatar użytkownika
Igor V
Użytkownik
Użytkownik
Posty: 1605
Rejestracja: 16 lut 2011, o 16:48
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 18 razy
Pomógł: 603 razy

Wyznaczyć C, Dwuwymiarowa zmienna losowa ciągła

Post autor: Igor V » 2 gru 2017, o 22:55

No to trzeba zastanowić się nad definicją dystrybuanty : \(\displaystyle{ F(s, t) = \iint_{(x,y) \in (-\infty, s] \times (-\infty, t]}f(x, y) \mbox{d}x \mbox{d}y}\). Dla \(\displaystyle{ s = 2, t = 1}\) :
\(\displaystyle{ F(2, 1) = \int_{0} ^{1} \mbox{d}x \int_{0} ^{1} \frac{Cxy}{ 1+x^{4}} \mbox{d}y}\)

ODPOWIEDZ