Mam delikatny problem z policzeniem pewnej pochodnej. Jako że nie studiuje w Polsce i nieszczególnie radzę sobie z polskim nazewnictem sformułuje problem po angielsku. Mam nadzieje że nie łamie w ten sposób regulaminu forum i nikomu to zbytnio nie będzie przeszkadzać.
Setting: (H, <>) stands for a real Hilbert space. The goal is to calculate the Fréchet derivative of the following function
\(\displaystyle{ F: H \to \mathbb{R}\hspace{0.5cm}x\mapsto \left| x \right|_H^p.}\)
Having the chain rule in mind, it can be advatanagous to decompose the function F into
\(\displaystyle{ F = f\circ g}\)
with
\(\displaystyle{ f(x) = x^{p/2},\hspace{0.5cm} g(x) = \left| x\right|^2_H.}\)
It is then clear that
\(\displaystyle{ \partial f(x) = \frac{p}{2}x^{(p-2)/2},\hspace{0.5cm} \partial g_x(\cdot) = 2\left\langle x, \cdot \right\rangle_H.}\)
The chain rule tells us then
\(\displaystyle{ \partial F = \partial f (g) \circ \partial g}\)
and finally we have
\(\displaystyle{ \partial F_x(\cdot ) = p\left| x\right|^{p-2}_H \cdot \left\langle x,\cdot\right\rangle_H,}\)
where the composition became multiplication. As expected (at least by me) our derivative maps into the space of linear bounded operators from H into R. The problem is that the solution I found in some books says that the result should be someting like that
\(\displaystyle{ \partial F_x = p\left| x\right|^{p-2}_H x,}\)
wchich for me is not an operator-valued function and therefore can not be the Frechet derivative of F. At what point am I thinking not correctly?Z góry dziękuję za każdą pomoc!


