Ciąg stopni i skojarzenie doskonałe

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
MathMaster
Użytkownik
Użytkownik
Posty: 318
Rejestracja: 23 paź 2009, o 20:17
Płeć: Mężczyzna
Lokalizacja: Gorzów Wlkp.
Podziękował: 80 razy

Ciąg stopni i skojarzenie doskonałe

Post autor: MathMaster »

Witam
Mam takie zadanko. Czy istnieje graf, który ma taki ciąg stopni wierzchołków \(\displaystyle{ (6, 6, 5, 5, 4, 4, 4, 4)}\), ale nie ma skojarzenia doskonałego?
Znalazłem na razie graf, który ma skojarzenie doskonałe.
Wydaję mi się, że nie ma takiego grafu o takim ciągu stopniu, który by go nie miał, ale nie wiem jak to udowodnić.
Mruczek
Użytkownik
Użytkownik
Posty: 1113
Rejestracja: 26 paź 2008, o 19:43
Płeć: Mężczyzna
Podziękował: 23 razy
Pomógł: 157 razy

Ciąg stopni i skojarzenie doskonałe

Post autor: Mruczek »

Z tw. Diraca ten graf ma cykl Hamiltona. Ten cykl ma parzystą długość, więc można wziąść z niego co drugą krawędź i mamy skojarzenie doskonałe. Nie istnieje graf bez skojarzenia doskonałego.
ODPOWIEDZ