czy jest to norma

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
nnnmmm
Użytkownik
Użytkownik
Posty: 369
Rejestracja: 16 sty 2013, o 15:48
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 102 razy
Pomógł: 1 raz

czy jest to norma

Post autor: nnnmmm »

Czy odwzorowanie \(\displaystyle{ \left\langle u(t) \right\rangle= \int_{0}^{1} e^{t^2}\left| u(t)\right|}\) jest normą w \(\displaystyle{ C[0,1]}\)
Ostatnio zmieniony 17 kwie 2016, o 13:00 przez nnnmmm, łącznie zmieniany 1 raz.
a4karo
Użytkownik
Użytkownik
Posty: 22461
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 43 razy
Pomógł: 3852 razy

czy jest to norma

Post autor: a4karo »

Nie, bo jest niedodatnie:-)
nnnmmm
Użytkownik
Użytkownik
Posty: 369
Rejestracja: 16 sty 2013, o 15:48
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 102 razy
Pomógł: 1 raz

czy jest to norma

Post autor: nnnmmm »

a4karo pisze:Nie, bo jest niedodatnie:-)
Poprawiłem przedział całkowania, teraz tak samo jest? To chyba jest norma, ale mam problem z uzasadnieniem tych warunków :/
a4karo
Użytkownik
Użytkownik
Posty: 22461
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 43 razy
Pomógł: 3852 razy

czy jest to norma

Post autor: a4karo »

No to pokaż próby...
nnnmmm
Użytkownik
Użytkownik
Posty: 369
Rejestracja: 16 sty 2013, o 15:48
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 102 razy
Pomógł: 1 raz

czy jest to norma

Post autor: nnnmmm »

To moze na początek pytanie, czy to, że funkcja podcałkowa jest \(\displaystyle{ \ge 0}\) pociąga, że całka na dowolnym przedziale tej funkcji jest \(\displaystyle{ \ge 0}\)?
a4karo
Użytkownik
Użytkownik
Posty: 22461
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 43 razy
Pomógł: 3852 razy

czy jest to norma

Post autor: a4karo »

Tak
ODPOWIEDZ