Jeśli ktoś mógłby je rozwiązać krok po kroku byłbym wdzięczny.
Oblicz granice funkcji:
1) \(\displaystyle{ \lim_{ x\to 4} \frac{x-4}{x+6}}\)
2) \(\displaystyle{ \lim_{ x\to 2} \frac{ x^{2}-4 }{x-2}}\)
3) \(\displaystyle{ \lim_{ x\to \infty } \frac{ 2x^{2}+4x }{ 9x^{2}-4 }}\)
Zbadać asymptoty pionowe i poziome wykresu funkcji:
\(\displaystyle{ f(x)= \frac{1-x}{x-2}}\)
Granica funkcji - studia
-
binio
- Użytkownik

- Posty: 181
- Rejestracja: 14 paź 2009, o 15:50
- Płeć: Mężczyzna
- Lokalizacja: Zbąszyń
- Podziękował: 4 razy
- Pomógł: 42 razy
Granica funkcji - studia
\(\displaystyle{ \lim_{x\to 4} \frac{4 - 4}{4 + 6} = 0}\)brun pisze:Jeśli ktoś mógłby je rozwiązać krok po kroku byłbym wdzięczny.
Oblicz granice funkcji:
1) \(\displaystyle{ \lim_{ x\to 4} \frac{x-4}{x+6}}\)
-- 2 lut 2016, o 06:30 --
\(\displaystyle{ \lim_{x\to 2} \frac{4 - 4}{2-2} = \frac{0}{0}}\)brun pisze: 2) \(\displaystyle{ \lim_{ x\to 2} \frac{ x^{2}-4 }{x-2}}\)
\(\displaystyle{ \lim_{x\to 2} \frac{(x-2)(x+2)}{x-2} = 2+2 = 4}\)
-- 2 lut 2016, o 06:33 --
\(\displaystyle{ \lim_{x\to\infty} \frac{x^2(2 + \frac{4}{x})}{x^2(9 - \frac{4}{x^2})} = \lim_{x\to\infty} \frac{2 + 0}{9-0} = \frac{2}{9}}\)-- 2 lut 2016, o 06:42 --brun pisze:
3) \(\displaystyle{ \lim_{ x\to \infty } \frac{ 2x^{2}+4x }{ 9x^{2}-4 }}\)
\(\displaystyle{ x - 2 = 0}\)brun pisze: Zbadać asymptoty pionowe i poziome wykresu funkcji:
\(\displaystyle{ f(x)= \frac{1-x}{x-2}}\)
\(\displaystyle{ x = 2}\)
\(\displaystyle{ \lim_{x\to\infty ^{+}_{-}} \frac{1-x}{x-2} = \lim_{x\to\infty^{+}_{-}} \frac{x(\frac{1}{x}-1)}{x(1-\frac{2}{x})} = \frac{-1}{1} = -1}\)
Asymptota pionowa x = 2
Asymptota ukosna y = -1
